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Symmetry constraints are built into a semiclassical propagation scheme. It is then applied to treat
H!Ne2 collisions at 30 K, where quantum selection rules restrict the final rotational states of
symmetric Ne2 molecules to the even manifold. The cross sections for state-to-state transitions are
calculated for symmetric and nonsymmetric isotopic compositions of Ne2 . All bound and long-lived
quasibound !trapped behind the centrifugal barrier" states of Ne2 are considered. This semiclassical
method captures symmetry effects and shows satisfactory agreement with the quantum results.
© 2002 American Institute of Physics. #DOI: 10.1063/1.1513457$

I. INTRODUCTION

Most semiclassical methods for molecular collisions
give results that violate symmetry selection rules. In this ar-
ticle we demonstrate a way to maintain the quantum property
of symmetry using semiclassical methods. For transparency,
we use the simplest version of the semiclassical method pro-
posed by Heller and known as the frozen Gaussian wave
packets method.1 Nevertheless, our approach is general and
it is straightforward to use it with more sophisticated and
accurate semiclassical methods, such as the Herman–Kluk
!HK" propagator,2–10 which is also known as the semiclassi-
cal initial value representation !SC-IVR" method,11–20 or the
recently proposed coupled coherent states !CCS"
method.21–24 Here we mention that the earlier classical
S-matrix theory of McCurdy and Miller25 has been shown to
describe rotational symmetry effects correctly. It is, neverthe-
less, important to demonstrate how modern wave-packet-
based semiclassical methods may be used to treat symmetry
properly.

Our interest in this problem has been driven by the long-
standing puzzle of the anomalous large isotope effect26,27 in
ozone formation. There is a hypothesis28,29,30 that molecular
symmetry plays an important role in this phenomenon.
Ozone is formed in the following recombination reaction,

O!O2!M↔O3!M. !1"

Here the third body M may be any atmospheric atom or
molecule. Different isotopes of oxygen (16O, 17O, and 18O)
may participate in this reaction and form symmetric or non-
symmetric reactant O2 and/or product O3 molecules. Be-
cause this process involves at least four heavy atoms, it is too
complex to treat with full quantum mechanics. Classical me-
chanics, on the other hand, does not allow us to incorporate
symmetry constraints rigorously !bins do not work properly",
and this may be a reason why classical trajectory studies31
have failed to account for anomalous isotope effects. Semi-
classical methods, being somewhat intermediate between

classical and quantum mechanics, are known for their rela-
tive efficiency and ability to reproduce various quantum
properties.32–38 That is why we want to develop a semiclas-
sical method to describe symmetry effects in recombination
reactions, such as the ozone recombination reaction above.

For the present study, we have chosen a simpler recom-
bination reaction,

Ne!Ne!H↔Ne2!H. !2"

This choice was made to take advantage of several features.

!a" Because the Ne2 molecule is weakly bound, its rovi-
brational spectrum is very simple !see Appendix A".

!b" Because, with the model mass we chose for H !see
later", there are no NeH bound states, we automatically
exclude the possibility of the chaperon !bound com-
plex" recombination mechanism.39

!c" By choosing different isotopes of the Ne atom (16Ne,
17Ne, 18Ne or 20Ne), we can form various symmetric
and nonsymmetric Ne2 molecules and study how sym-
metry affects this recombination reaction.

!d" This reaction was already studied by some of us40,41
with an approximate quantum mechanical method
!VRIOSA" and this earlier study provides an opportu-
nity to test the semiclassical method.

II. RESULTS OF VRIOSA

Before we discuss the semiclassical method, the central
focus of this article, we decided to give the reader a flavor of
symmetry effects by presenting some results for reaction !2"
that we have obtained with the vibrational rotational infinite
order sudden approximation !VRIOSA". The VRIOSA is an
approximate quantum method and it treats symmetry rigor-
ously. Overall, it produces semiquantitative results. The de-
tails of the method and its results for one symmetric isotopic
combination of the Ne2 molecule (18Ne18Ne) have been al-
ready reported.40 Theoretically, it is more convenient to
study the backward direction of reaction !2"—the collision of
a Ne2 molecule with an H atom producing state-to-state tran-
sitions in Ne2 and, possibly, its dissociation #collision in-
duced dissociation42 !CID"$. Here we present results in
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which the initial state of Ne2 is the ground rovibrational state
(v"0,j"0), at a total energy of 30 K. In Table I we show
state-to-state cross sections for transitions to all bound and
quasibound states for three different isotopic combinations of
the Ne2 molecule—two symmetric combinations (16Ne16Ne,
and 18Ne18Ne) and one nonsymmetric combination
(16Ne18Ne). As discussed in Appendix A, symmetric mol-
ecules exist only in even rotational states !a total of 11 states
in Table I", while nonsymmetric molecules exist in both even
and odd rotational states !a total of 20 states in Table I".
Furthermore, Table I shows that different isotopic combina-
tions have a different number of quasibound states.

For symmetric molecules only transitions between even
states ( j"0,2,4,...) are allowed. For nonsymmetric molecule
transitions into both even and odd states ( j"0,1,2,3,...) are
allowed, and one may at first think that the corresponding
cross sections would vary smoothly !statistically" as a func-
tion of quantum number j. The VRIOSA results of Table I
show that this is not the case. The initial state is even ( j
"0) for all isotopic combinations and cross sections for
transitions into even states ( j"0,2,4,...) change smoothly as
a function of j for all isotopic combinations. Nevertheless,
transitions into odd states ( j"1,3,5,...) for the nonsymmetric
molecule 16Ne18Ne exhibit cross sections often two orders of
magnitude smaller! This behavior is certainly not statistical
and not classical !when a classical rotator collides with an
atom, a smooth continuous distribution of angular momen-
tum is produced". In the next sections we show that a simple
semiclassical method is able to reproduce the symmetry ef-
fects outlined in Table I.

III. THEORY

We use Jacobi coordinates and define r as the vector
connecting the two nuclei of the Ne2 molecule and R as the
vector connecting the center-of-mass of Ne2 with the H
atom. We follow the earlier work of one of us43 and separate
the classical and quantum parts of the system: the relative
atom–molecule motion follows a classical trajectory R(t),
while the motion in the intermolecular coordinate r is de-
scribed by a wave function %(r,t) obeying the time depen-
dent Schrödinger equation,

i
&%!r,t "
&t "! #

1
2' (r!V!r,t " "%!r,t ". !3"

Here the time dependence of the potential is actually driven
by the classical trajectory R(t) of relative atom–molecule
motion, V(r,t))V(r,R(t)). This approximation should
work very well here because the H atom is light and fast
!compared to the much heavier Ne atoms of the molecule"
and its motion may therefore be described classically. Fur-
thermore, the role of the H atom is just to impart energy into
the molecule; no quantum phenomena are expected to occur
in the motion of the H atom. At the same time, the quantum
properties of symmetry, which we explore in this work, are
associated with the Ne2 molecule and will be properly de-
scribed by the wave function %(r,t) and Eq. !3".

A. Frozen Gaussian wave packets

Equation !3" is propagated semiclassically according to
the frozen Gaussian wave packets method1 of Heller. This
method has been derived and discussed several
times,1,2,44,45,46 so here we just give an outline, mostly to
introduce notations. Let us suppose that initially !before the
collision" our molecule is in quantum eigenstate #a*. First, an
approximate semiclassical wave function +a(r) is prepared
as a superposition of Gaussian wave packets,

+a!r""N,
n
cnGn!r". !4"

Here N is used for normalization, and the expansion coeffi-
cients cn are obtained by projecting Gaussian wave packets
onto the initial eigenstate, cn"-a#Gn(r)*. Gaussian wave
packets are taken in the form,

Gn!r""! 2./ " 3/4 exp0#.!r#rn"2!ipn•!r#rn"!i1n2.

!5"

Here rn and pn are the position and momentum of the center
of the nth Gaussian, and 1n is its phase. These parameters
are time dependent and are used to propagate +a(r) in time
by propagating each of the n Gaussian wave packets inde-
pendently. Positions and momenta obey Hamilton’s equa-
tions of motion !classical trajectories",

ṙn"
pn
'
, ṗn"#3rV!rn ,t ". !6"

The phases are obtained by integrating the classical action,

TABLE I. VRIOSA results. Cross sections !in a.u." for state-to-state transi-
tions in Ne2!H collision. Total energy is 30 K. Final states are labeled by v
and j, vibrational and rotational quantum numbers, respectively. Initial state
was ground rovibrational state (v"0,j"0). Shown are results for three
different isotopic compositions of the Ne2 molecule, 16Ne16Ne, 16Ne18Ne,
and 18Ne18Ne.

Final states Isotope combinations

v j 16/16 16/18 18/18

0 0 236.55 236.94 237.51
1 0.51
2 89.13 88.54 89.18
3 0.21
4 29.50 29.00 29.14
5 0.33
6 5.66 5.44 5.53
7 0.20
8 1.01 0.91 0.99
9 0.08
10 0.21 0.18 0.22
11 0.03
12 0.05 0.03 0.05

1 0 0.76 0.75 0.75
1 0.01
2 0.33 0.32 0.32
3 0.01
4 0.08 0.09 0.11
5 0.00
6 0.06 0.05 0.05
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1̇n"
pn
2

2'#V!rn ,t ". !7"

The width parameter . of the wave packets is not allowed to
vary in time; it is ‘‘frozen’’ and is set to be a real positive
number. The semiclassical wave function at time t, denoted
here as %a(r,t), is obtained then as a superposition of Gauss-
ian wave packets at time t,

%a!r,t ""N! t ",
n
cnGn!r,t ". !8"

This propagation scheme is almost as simple as classical me-
chanics #Eq. !6"$ but each trajectory possesses a phase #Eq.
!7"$ and contributes coherently to the total wave function in
Eq. !8". This property of the semiclassical method is essen-
tial for the description of scattering, where quantum phenom-
ena !such as rainbows" occur. For the present study it is also
important that this simple semiclassical propagation scheme
produces not just a bunch of trajectories, but the final wave
function #Eq. !8"$, an entity which may be exposed to quan-
tum mechanical analysis. This fact, together with appropriate
choice of initial conditions for the Gaussian wave packets
!described in the next section", allows us to build symmetry
constraints into the dynamics and to extract symmetry-
related information from the final wave function.

In one of their pioneering articles on the
HK-propagator,3 Herman and Kluk stated that the method of
frozen Gaussians may be considered as an approximate HK-
propagator where the so called ‘‘prefactors’’ !normally time-
dependent and obtained from monodromy analysis2,3" are
kept constant, and that this approximation is valid when the
characteristic time of the process under consideration is
short. This is indeed the case for the Ne2!H collision con-
sidered here, because the H atom is much lighter than the
Ne2 molecule and the time scale of strong interaction is
about ten times shorter than the characteristic vibrational pe-
riod of Ne2 . To eliminate the error accumulated during the
time when Ne2 and H approach each other !before the colli-
sion" and separate !after the collision" we use the interaction
picture.37,38,47–52 In this approach, forward propagation with
the total Hamiltonian is followed by backward propagation
with a channel Hamiltonian. The channel Hamiltonian in this
case corresponds to an independently moving Ne2 molecule
and H atom. The potential for this Hamiltonian is obtained
by removing the Ne–H interaction terms in the pairwise-
additive potential40 used here. One may also note that we
renormalize the semiclassical wave function as it evolves
#the coefficient N(t) in Eq. !8"$ and this is more a feature of
the HK-propagator3 than of the original frozen Gaussian
wave packets method of Heller.1

B. Representation of initial eigenstates

Eigenstates #a* of Ne2 are described by the usual three-
dimensional wave functions corresponding to v , j, and m
quantum numbers of a diatomic,

av jm!r""av jm!r ,4 ,5""
6v j!r "
r Y j

m!4 ,5". !9"

Here 6v j(r) is vth eigenfunction of the one-dimensional ra-
dial Schrödinger equation when angular momentum number
is j, and Y j

m(4 ,5) is the usual spherical harmonic. As one
may have noticed, the semiclassical propagation starts not
from a numerically exact initial quantum eigenstate #a* but
from an approximate !semiclassical" wave function #+a*
given by Eq. !4". Phases 1n of all n Gaussians are taken to be
zero initially. Positions rn and momenta pn of the Gaussian
wave packets #Eq. !5"$ should be properly chosen to make
#+a* a good approximation to #a*, so that -a#+a*71. To
describe quantum eigenstate #a*"#v jm*, we use well-
known quantum-classical correspondence53 relations and let
the wave packets follow classical trajectories defined by the
three following conservation laws:

#p#2

2' !V!r""Ev j , !10"

#L#2" j! j!1 ", !11"

Lz"m . !12"

Here Ev j is the rovibrational energy of the eigenstate, and
L)r$p and Lz are the classical trajectory angular momen-
tum and its z-component, respectively. Practical realization
of this choice consists of the two steps described next.

First, we cover a spherical layer in space, where the
wave function #Eq. !9"$ is located, with Gaussians. To place
Gaussians as uniformly as possible we triangulate the surface
of the upper hemisphere of a polar coordinate system, as
shown in Fig. 1, dividing it into spherical triangles of similar
shape and approximately equal surface area. We use the cen-
ters of these triangles to define a number of angular direc-
tions, as shown in Fig. 1. The centers rn of several Gaussians
are placed along these directions, and, to satisfy Eq. !10",
between the radial turning points. It is known, that for j%0
there is a part of configuration space, around the poles, where
Eqs. !11"–!12" cannot be satisfied !see also Appendix B".

FIG. 1. Triangulation of the upper hemisphere. The North Pole is marked
with an empty dot. In this particular example the triangulation gives 96
spherical triangles. One angular direction is shown as a vector starting at the
center of the sphere !star" and passing through the center of surface triangle
!black dot".
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There, the amplitude of the wave function #Eq. !9"$ is very
small. For each j value this part of space is identified and is
not covered by Gaussians.

Second, we assign the initial momenta pn to the wave
packets to obey Eqs. !10"–!12". In Appendix B it is shown
that !for j%0) if the position rn is chosen anywhere between
the turning points, then four different pn vectors satisfy Eqs.
!10"–!12", and so we start four wave packets from each such
point. If the initial position rn is a turning point, then only
two different pn vectors satisfy Eqs. !10"–!12", and we start
only two wave packets from the turning points. If j"0, then
these are reduced to two wave packets starting from any
point between the turning points and one wave packet start-
ing from any turning point. This simplest situation is shown
in Fig. 2. Here we decided to place four initial wave packets
in each radial direction. Two of them start at the turning
points with no initial momenta. The other two start in the
middle between the turning points with equally-valued but
oppositely-directed radial momenta. When j%0 additional
tangential components of momenta appear !see Appendix B",
and the picture becomes more complex.

After the upper hemisphere is covered by Gaussians, we
reflect their positions and momenta through the center of the
sphere onto the lower hemisphere. This finalizes the sam-
pling procedure.

Our sampling procedure produces trajectories ‘‘on the
energy shell,’’ as opposed to Monte Carlo sampling from a
Wigner space distribution.3 We need to use ‘‘on the energy
shell’’ trajectories, because we also want to describe the qua-
sibound long-lived states of the Ne2 molecule !see Appendix
A" with the same procedure that we use for bound states.
Classical trajectories may be prepared at the energy of a

long-lived quasibound state, with appropriate initial condi-
tions so that they remain trapped forever behind the centrifu-
gal barrier. These trajectories permit us to reasonably de-
scribe quasibound states. On the contrary, Wigner space
sampling would produce some trajectories at energies above
the centrifugal barrier and allow the Ne2 molecule to disso-
ciate even without colliding with the H atom. These events
would create a problem in the present study.

C. How do we capture the effect of symmetry?

Let us consider two wave packets placed symmetrically
at the initial moment of time. We will call them the ‘‘!’’ and
the ‘‘#’’ packets. This may be an arbitrarily chosen pair of
symmetric wave packets from Fig. 1. They are defined by
position vectors r!"r0 and r#"#r0 , and momentum vec-
tors p!"p0 and p#"#p0 , respectively. These wave pack-
ets describe two different arrangements of Ne atoms in the
Ne2 molecule, as shown in Fig. 3. For the case of a symmet-
ric Ne2 molecule, where the two Ne atoms are identical, the
two arrangements of the H–Ne2 ‘‘collision complex’’ are
also identical for any arbitrary position R(t) of the H atom
#see Fig. 3!a"$. In this case the potential energy, which enters
the equations of motion #Eq. !6"$, will be exactly equal for
the two wave packets: V(r!)"V(r#), and the gradient vec-
tors, entering the phase equation #Eq. !7"$, will be different

FIG. 2. Covering a spherical layer in space with Gaussians, a two-
dimensional slice. Inner and outer turning points lie on dashed circles. Gaus-
sians are shown schematically by their centers !black dots" and extend to the
surrounding solid circles. Four Gaussians are placed along each radial di-
rection: one at the inner turning point, one at the outer turning point, and
two in the middle between them. In this simplest case j"0, so that the two
Gaussians placed at the turning points have no initial momenta. The other
two Gaussians have equally-valued and oppositely-directed radial momenta
!bold vectors".

FIG. 3. Arrangements of H and Ne2 nuclei in the case of !a" symmetric Ne2
molecules, and !b" nonsymmetric Ne2 molecules. See text for discussion of
symmetry effects.
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just by a sign: 3rV(r!)"#3rV(r#). But for the case of a
nonsymmetric Ne2 molecule, where the two Ne atoms have
different masses, the two arrangements of the H–Ne2 ‘‘col-
lision complex’’ are different #Fig. 3!b"$, because of the
slight shift in the center-of-mass of the Ne2 . As a result, the
potentials and the gradients will be different for the ‘‘!’’ and
‘‘#’’ wave packets.

Let us consider first the symmetric case #Fig. 3!a"$. Each
Gaussian wave packet is propagated independently during
the collision with the H atom. Nevertheless, each pair of
wave packets, placed symmetrically at the initial moment of
time, will remain symmetric in its motion as the H atom
evolves along its trajectory R(t). This is clearly seen from
the equations of motion #Eqs. !6"–!7"$ for the two wave
packets. For the ‘‘!’’ wave packet we have

r!! t ""r0!$
0

t p!! t "
'

dt , !13"

p!! t ""p0#$
0

t
3rV!r!,t "dt , !14"

1!! t ""$
0

t% #p!! t "#2

2' #V!r!,t "&dt . !15"

For the ‘‘#’’ wave packet we obtain

r#! t ""#r0!$
0

t p#! t "
'

dt"#r0#$
0

t p!! t "
'

dt , !16"

p#! t ""#p0#$
0

t
3rV!r#,t "dt"#p0!$

0

t
3rV!r!,t "dt ,

!17"

1#! t ""$
0

t% #p#! t "#2

2' #V!r#,t "&dt
"$

0

t% #p!! t "#2

2' #V!r!,t "&dt . !18"

So, during the collision we will always have

r#! t ""#r!! t ", p#! t ""#p!! t ", 1#! t ""1!! t ".
!19"

The total time dependent wave function #Eq. !8"$, composed
of the Gaussian wave packets, or, one may now say, com-
posed of pairs of symmetric Gaussian wave packets, will also
remain symmetric during the propagation. Projection !de-
scribed in the next section" of such a wave function onto
eigenstates will reveal only even components ( j"0,2,4,...)
and no odd components ( j"1,3,5,...) at all. Therefore, sym-
metry is preserved during the H–Ne2 collision and we will
observe only even-to-even transitions for the case of sym-
metric molecules.

For a nonsymmetric molecule #Fig. 3!b"$, the trajectories
of the ‘‘!’’ and ‘‘#’’ wave packets do not follow any special
rules such as those of Eq. !19"; the two wave packets evolve
differently under the influence of different potentials and gra-
dients. If the initial j state is either even or odd, its symmetry
is broken during the H!Ne2 collision. As a result, the final
wave function will contain both even and odd j components.

So, for nonsymmetric molecules, we will observe all types of
transitions: even-to-even, even-to-odd, odd-to-even, and
odd-to-odd.

These properties of state-to-state transitions in this semi-
classical method are equivalent to quantum selection rules.
Though this idea is intuitively simple, to the best of our
knowledge it has never been exploited before in a semiclas-
sical method.

D. Analysis of the final wave function

Cross sections for state-to-state transitions, b←a , are
calculated semiclassically,54

8ba"$
0

2/$
0

9

Pba!: ,;":d:d; . !20"

Here the impact parameter : and angle ; define the initial
conditions for the trajectory of the H atom in a plane perpen-
dicular to the incident direction, and Pba(: ,;) is the state-
to-state transition probability for such a trajectory, obtained
from elements of the transition matrix,

Pba!: ,;""#Tba!: ,;"#2. !21"

The total probability of transitions to continuum states #k*,
i.e., the dissociation probability, can be obtained from com-
pleteness,

Pka!: ,;""1#,
b"1

N

#Sba!: ,;"#2, !22"

where Sba are elements of the scattering matrix and the sum
is over all bound states #b*. Later in this section we derive
expressions to calculate Tba and Sba from the results of our
semiclassical method. Their dependence on : and ; is im-
plicit and is omitted for clarity.

The scattering operator Ŝ and transition operator T̂) Ŝ
#1 can be defined as

#%a*" Ŝ#+a*, !23"

#%a*##+a*" Ŝ#+a*##+a*"! Ŝ#1 "#+a*"T̂#+a*. !24"

Projecting Eq. !23" and Eq. !24" onto the final eigenstate #b*
gives

-b#%a*"-b#Ŝ#+a*"Sba
!0 " , !25"

-b#%a*#-b#+a*"-b#T̂#+a*"Tba
!0 " . !26"

In our case #+a*7#a*, so that Eqs. !25"–!26" may really be
considered as approximate, ‘‘zero order’’ expressions. Nev-
ertheless, for reasons discussed below !wrong asymptotic be-
havior and wrong relationship between transition and scatter-
ing matrices", this approximation is too crude for calculating
cross sections. A more accurate formalism follows.

First, let us consider a simple case, when only N bound
states are involved in the process !a countable, preferably
small number of states". Inserting closure relations into Eq.
!26" gives
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-b#%a*#-b#+a*",
c"1

N

-b#T̂#c*-c#+a*",
c"1

N

Tbc-c#+a* .

!27"

To obtain the entire N$N transition matrix Tba we would
have to construct two N$N matrices ! and " with ele-
ments defined as

<ba)-b#%a*, 1=a=N, 1=b=N, !28"

>ca)-c#+a*, 1=a=N, 1=c=N, !29"

and then to solve the matrix form of Eq. !27",

"#!"T! !30"

by inverting the ! matrix,

T"!"#!"!#1. !31"

Construction of the matrices ! and " requires running N
independent propagations, corresponding to all possible ini-
tial states 1=a=N in Eqs. !28"–!29". For each run, N pro-
jections -b#+a* and -b#%a* of the initial and final wave func-
tions onto the eigenstates 1=b=N are calculated. Similar
considerations for the scattering matrix give

S""!#1. !32"

This way of constructing scattering and transition matrixes is
general; it does not rely on the quality of initial representa-
tion #%a*. Nevertheless, it is not straightforward to apply this
procedure to the case when strong excitation is present and
the continuum states #k* are populated during the collision, so
that dissociation is induced. First of all, we want to avoid
projecting onto a huge number of states #k* necessary to de-
scribe transitions to the continuum. Calculation of three-
dimensional integrals in Eqs. !28"–!29" is the most compu-
tationally demanding part of this method; it is quite
affordable when only bound states of Ne2 are considered, but
it scales as N2 and becomes prohibitively expensive when
the number of states increases. Second, it is not clear how to
apply the same semiclassical methodology when the initial
state is a free continuum state #k*. Because we want to keep
our method simple, the following approach is designed to
avoid starting from !and projecting onto" continuum states.

When continuum states #k* are involved, instead of Eq.
!27" we obtain

-b#%a*#-b#+a*",
c"1

N

-b#T̂#c*-c#+a*

!$
0

9

-b#T̂#k*-k#+a*dk . !33"

Rearranging terms as follows:

-b#%a*#-b#+a*"Tba-a#+a*!,
c?a

Tbc-c#+a*

!$
0

9

Tbk-k#+a*dk , !34"

we arrive at the general expression,

Tba"
-b#%a*#-b#+a*

-a#+a*
#,

c?a
Tbc

-c#+a*
-a#+a*

#$
0

9

Tbk
-k#+a*
-a#+a*

dk . !35"

Here the sum is over all bound states, except the initial state
#a*.

The entire Eq. !35" must be used only if the initial wave
function #+a* is completely arbitrary, i.e., very different from
the initial eigenstate, #+a*?#a*. When the initial wave func-
tion is numerically exact, #+a*"#a*, we can substitute
-a#+a*"1, -b#+a*"@ba , -c#+a*"0, and -k#+a*"0 into
Eq. !35", and obtain the expected result,

Tba"-b#%a*#-b#a*"-b#%a*#@ba"Sba#@ba . !36"

In our case #+a*7#a* and as the ‘‘first order’’ approximation
to Eq. !35" we may consider

Tba
!1 ""

-b#%a*#-b#+a*
-a#+a*

. !37"

Indeed, if in our case -a#+a*71, -c#+a*70 and -k#+a*
70, then two last terms in Eq. !35", the sum and the integral,
can be neglected. For the scattering matrix element we simi-
larly obtain

Sba
!1 ""

-b#%a*
-a#+a*

. !38"

Further improvement can be made by considering the rela-
tive importance of different terms in the sum and integral of
Eq. !35". Note that one term in the sum, when c"b , corre-
sponds to the elastic process. In the collisions we consider
here, the elastic transition probabilities are much larger than
inelastic ones !see Table I here and Table III in Ref. 40", so
the main contribution to the sum and integral in Eq. !35" is
associated with just the one term containing Tbb . This fea-
ture was also verified by our calculations. Therefore, the
‘‘second order’’ correction can be written as

Tba
!2 ""Tba

!1 "#Tbb
!1 " -b#+a*
-a#+a*

"
-b#%a*#-b#+a*

-a#+a*
#Tbb

!1 " -b#+a*
-a#+a*

, b?a , !39"

where the first order Tba
(1) and Tbb

(1) are those defined by Eq.
!37". This correction is applied only to inelastic processes
b←a , b?a !i.e., for off-diagonal elements of the T-matrix",
because c?a in the sum of Eq. !35". For elastic processes
(a←a) there is not a second order correction,

Taa
!2 ""Taa

!1 ""
-a#%a*#-a#+a*

-a#+a*
"
-a#%a*
-a#+a*

#1. !40"

For scattering matrix elements, we similarly obtain

Saa
!2 ""Saa

!1 ""
-a#%a*
-a#+a*

, !41"

8618 J. Chem. Phys., Vol. 117, No. 19, 15 November 2002 Babikov, Walker, and Pack

Downloaded 07 Mar 2007 to 134.48.20.29. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



Sba
!2 ""Sba

!1 "#Sbb
!1 " -b#+a*
-a#+a*

"
-b#%a*
-a#+a*

#Sbb
!1 " -b#+a*
-a#+a*

, b?a .

!42"
The ‘‘second order’’ expressions Eqs. !39"–!42" are still ap-
proximate, but they possess two important properties which
are not present in the ‘‘zero order’’ expressions of Eqs. !25"–
!26" or ‘‘first order’’ expressions Eqs. !37"–!38". The first
property is the correct relationship #equivalent to that of the
exact Eq. !36"$ between transition and scattering matrices,

Tba
!2 ""Sba

!2 "#@ba . !43"

For elastic process a←a this property follows directly from
Eq. !40" and Eq. !41". For inelastic process b←a , this prop-
erty can be proved by substituting Eq. !38" into Eq. !42" and
Eq. !37" into Eq. !39", canceling terms and comparing re-
sults. The second property is the correct asymptotic behavior
of both Sba

(2) and Tba
(2) . When the impact parameter of the

H–Ne2 collision is large, :→9 , the H atom passes far away
from the Ne2 molecule and nothing happens. Forward–
backward propagation of such a collision does not change
the wave function at all: #%a*"#+a* . Substituting this ex-
pression into Eqs. !39"–!42" gives

Sba
!2 "!:→9""@ba , !44"

Tba
!2 "!:→9""0. !45"

Equations !44"–!45" reflect asymptotic unitarity and have the
simple meaning that as :→9 all inelastic transitions vanish
while the elastic scattering probability approaches unity.

E. Implementation

The incident direction of H atoms is chosen to be paral-
lel to the Z-axis. The center of the Ne2 molecule is placed at
the center of the reference frame. We start classical trajecto-
ries R(t) with the H atom placed in a plane perpendicular to
the incident direction and positioned at a distance of 15 a.u.
from the center of the Ne2 molecule, so that Rz(t"0)"
#15 a.u. Uniform Monte Carlo sampling is performed on the
circle 00=:=15 a.u.; 0=;=2/2 in this plane to choose
Rx(t"0) and Ry(t"0). Typically, 500 trajectories are
enough to calculate converged cross sections using Eq. !20"
and to plot accurate opacity functions such as those in Fig. 4
below. Trajectories are propagated for 200 000 a.u. of time in
both the forward and backward directions.

The required number of Gaussian wave packets, suffi-
cient for the present task, is determined by a convergence
study. Triangulation of the upper hemisphere, giving 256 sur-
face triangles !almost three times larger than that shown in
Fig. 1", is used in the final calculations. Eight Gaussian wave
packets are placed along each radial direction, giving a total
of 4096 Gaussians on the sphere. Although the choice of the
Gaussian width parameter . in Eq. !5" is in principle arbi-
trary, we have studied the .-dependence of the final results
for a fixed number of Gaussians used. We found that the
.-dependence exhibits a plateau region, where the results are
only weakly sensitive to the choice of .. We finally chose
."0.5, which is quite close to the center of the plateau and
corresponds to a wave packet width equal to 1 a.u. Such a set

of Gaussian wave packets allows us to construct quite accu-
rate initial states #+a* using Eq. !4". For example, when the
initial eigenstate #a* is the ground rovibrational state (v
"0,j"0), we obtain -a#+a*"0.9778.

As it was mentioned in Ref. 41, by accurate calculations
in a hyperspherical formulation we have found one ex-
tremely broad !A175 a.u." weakly bound !#0.041 K" NeH
state. In order to eliminate completely the possibility of the
chaperon recombination mechanism in present model study,
we decreased the mass of H atom to a 0.7 amu. That mass of
the H atom, which gives no bound NeH states at all, was
used in all the calculations reported herein.

IV. RESULTS AND DISCUSSION

Here we present the results in which the initial state of
Ne2 is the ground rovibrational state (v"0,j"0). Complete
state-to-state cross section matrices (11$11 for symmetric

FIG. 4. Semiclassical transition and scattering probabilities for H
!16Ne16Ne collisions at 30 K as a function of impact parameter for !a" the
elastic channel, and two inelastic channels, corresponding to !b" rotational
and !c" vibrational excitations.
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16Ne16Ne and 18Ne18Ne molecules, and 20$20 for the non-
symmetric 16Ne18Ne molecule" have also been calculated us-
ing both the VRIOSA and semiclassical methods and are
available from EPAPS.55 In all cases, the total energy was 30
K (72.59$10#3 eV). All cross sections are summed over
final m and averaged over initial m.

Semiclassical transition and scattering probabilities have
been calculated as a function of the impact parameter : of
the H atom. Results for the elastic scattering channel (v
"0,j"0)←(v"0,j"0) are shown in Fig. 1!a". Figures 1!b"
and 1!c" illustrate our results for two inelastic transition
channels: pure rotational excitation (v"0,j"2)←(v"0,j
"0) and pure vibrational excitation (v"1,j"0)←(v"0,j
"0), respectively. All curves exhibit the correct quantum
behavior. Transition probabilities vanish, and the elastic scat-
tering probability approaches unity as the impact parameter
becomes large. This is a remarkable result, because classical
scattering theory is known to fail completely in its descrip-
tion of elastic scattering due to the lack of phase information.
Classical trajectories do not interfere with each other.
Though the semiclassical Gaussian wave packets also evolve
along independent, uncoupled trajectories, they nevertheless
accumulate phases and contribute coherently to the overall
wave function, giving rise to quantum interference.

Semiclassical state-to-state elastic and inelastic cross
sections are given in Table II and can be directly compared
with the VRIOSA results in Table I. One should remember
that here we are comparing the results of two entirely differ-
ent approximate methods, and some quantitative differences
are expected and acceptable. Results in Table II show that
our semiclassical method indeed captures the quantum prop-

erty of symmetry—all cross sections for transitions into odd
states of symmetric molecules are numerically zero !order of
10#32 a.u.) and are not shown. Furthermore, state-to-state
cross sections for collisions involving a nonsymmetric mol-
ecules exhibit the weak selection rule seen also in Table
I—transitions with even ( j are significantly more favored
than transitions with odd ( j . Overall, the semiclassical and
VRIOSA results are in semiquantitative agreement. Some-
what higher semiclassical cross sections, like those for (v
"1,j"2)←(v"0,j"0) transitions in Table II, are due to
our use of the approximate T-matrix in the form of Eqs.
!39"–!40".

V. CONCLUSIONS

In this article we have presented the first application of a
new semiclassical methodology to inelastic atom–molecule
scattering in three physical dimensions. The method allows
the calculation of cross sections for elastic and all inelastic
state-to-state transitions, including those for long-lived qua-
sibound states. The most important result is the demonstrated
ability to build symmetry constraints into the semiclassical
propagation scheme to obtain quantum selection rules. The
method is attractive both for its computational affordability
and the physically transparent picture it provides. Compari-
son of semiclassical results with quantum sudden approxima-
tion results has been done, and satisfactory agreement has
been obtained.
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APPENDIX A: EIGENSTATES OF Ne2 MOLECULE

The states of the Ne2 molecule were accurately calcu-
lated numerically. The energies Ev j and wave functions
6v j(r) were calculated with the renormalized Numerov
method.40 The energies of long-lived states for three different
isotopic compositions of Ne2 are shown in Table III. Zero
energy corresponds to the dissociation limit of Ne2 . Nega-
tive values correspond to bound states and positive values
correspond to quasibound states trapped behind an angular
momentum barrier. The potential energy curve for Ne–Ne
interaction is very shallow (De"47 K) and it can accommo-
date just two vibrational and several rotational levels. As
mentioned in Ref. 40, by accurate calculations in a hyper-
spherical formulation we have also found that 18Ne2 pos-
sesses the (v"2,j"0) state that is just barely bound at
#0.00017 K. The wave function for this state extends to very
large distances; a plot clearly shows that it has nonzero am-
plitude at distances larger than 500 a.u. It was also shown in
Ref. 40 that this state should not be important for the kinetics
of the recombination reaction !2". Therefore, this state has
not been included into considerations in the present paper.

TABLE II. Semiclassical results. Cross sections !in a.u." for state-to-state
transitions in the Ne2!H collision. Total energy is 30 K. Final states are
labeled by v and j, vibrational and rotational quantum numbers, respec-
tively. Initial state was ground rovibrational state (v"0,j"0). Shown are
results for three different isotopic compositions of the Ne2 molecule:
16Ne16Ne, 16Ne18Ne, and 18Ne18Ne.

Final states Isotope combinations

v j 16/16 16/18 18/18

0 0 243.52 242.16 241.20
1 0.34
2 51.20 49.18 47.85
3 0.22
4 9.60 9.34 9.20
5 0.09
6 2.64 2.48 2.45
7 0.06
8 0.94 0.85 0.84
9 0.03
10 0.25 0.23 0.24
11 0.01
12 0.05 0.05 0.05

1 0 0.54 0.50 0.48
1 0.02
2 1.18 1.12 1.09
3 0.01
4 0.29 0.30 0.30
5 0.00
6 0.06 0.05 0.04
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Symmetric molecules (16Ne16Ne and 18Ne18Ne) occur
only in even j, because 16Ne and 18Ne are spinless bosons,
and the ground electronic state of Ne2 is a 1Bg

! state. Non-
symmetric 16Ne18Ne occurs in both even and odd j. Refer-
ence 40 gives several plots of 6v j(r) for one isotopic com-
bination (18Ne18Ne) and discusses their properties in more
detail.

APPENDIX B: SAMPLING THE INITIAL MOMENTA

Equations !10"–!12" may be rewritten as follows:

px
2!py

2!pz
2"2'!Ev j#V!r"", !B1"

#r##p#sinC"!j! j!1 ", !B2"

rxpy#pxry"m . !B3"

Here C is an angle between vectors r and p. Unknown in
these three equations are only the three components of mo-
mentum vector: (px ,py ,pz). Equation !B2" can be trans-
formed into

cos2 C"1#
j! j!1 "
r2p2 . !B4"

Then, using rxpx!rypy!rzpz"#r'p#cosC it can be rewrit-
ten as

rxpx!rypy!rzpz"&!1#
j! j!1 "
r2p2 #r'p#. !B2!"

Equations !B2!" and !B3" can be easily resolved to get px
and py as functions of pz . Those can be substituted in Eq.
!B1", which gives four solutions:

pz
&&"&!2'!Ev j#V!r""#

j! j!1 "
r2 • rz#r#

&!j! j!1 "
r2 #

m2

rx
2!ry

2 •!rx
2!ry

2

r2 , !B5"

py
&&"d&#cpz

&& , !B6"

px
&&"b&#apz

&& . !B7"

Here we defined

a)
rxrz
rx
2!ry

2 , !B8"

b&)&!2'!Ev j#V!r""#
j! j!1 "
r2 • rx#r#

rx
2!ry

2#
rym
rx
2!ry

2 ,

!B9"

c)
ryrz
rx
2!ry

2 , !B10"

d&)&!2'!Ev j#V!r""#
j! j!1 "
r2 • ry#r#

rx
2!ry

2

!
rxm
rx
2!ry

2 . !B11"

The condition

2'!Ev j#V!r""#
j! j!1 "
r2 D0 !B12"

in Eqs. !B5", !B9", !B11" restricts the rotational energy not to
exceed the total kinetic energy. The condition;

j! j!1 "
r2 #

m2

rx
2!ry

2D0 !B13"

in Eq. !B5" restricts the energy of rotation around the Z-axis
not to exceed the total rotational energy. It may be written as

!rx2!ry
2

#r# "cos 4D! m2

j! j!1 ", !B14"

where 4 is a spherical polar angle defined to range from
#//2 to //2. For any m and j values this condition limits the
space where the Gaussian wave packets can be placed to

#4#=arccos!! m2

j! j!1 " " . !B15"
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