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Adiabatic coherent control in the anharmonic ion trap: Proposal for the
vibrational two-qubit system
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A method for encoding a multiqubit system into the quantized motional states of ion string in an anharmonic
linear trap is proposed. Control over this system is achieved by applying oscillatory electric fields (rf) shaped
optimally for desired state-to-state transitions. Anharmonicity of the vibrational spectrum of the system plays a
key role in this approach to the control and quantum computation, since it allows resolving different state-to-state
transitions and addressing them selectively. The anharmonic trap architecture proposed earlier [Phys. Rev. A 83,
022305 (2011)] is explored here and the optimal control theory is used to derive pulses for a set of universal
quantum gates. An accurate choice of pulse parameters allows deriving gates that are both accurate and simple.
A practical realization of this approach seems to be within the reach of today’s technology.
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I. INTRODUCTION

A string of atomic ions trapped and cooled in a linear Paul
trap represents a man-made quantum system well isolated
from the environment. Favorable properties of this system,
such as a long coherence time and the possibility of fast and
reliable manipulations with its quantum states, make it suitable
for the practical realization of quantum computation. In the
original proposal of Cirac and Zoller [1], qubits are encoded
into electronic states of ions and quantum gates are achieved by
laser excitation of ions, dependent on their motional eigenstate.
The motional mode of multiple ions in the trapping potential
is used to create entanglement. Realization of this proposal in
the experiment [2] led to many fascinating developments and
the explosive growth of the field [3—17].

While the architecture of Cirac and Zoller relies mostly on
the electronic states of individual ions, the quantized states
of collective vibrational motion of ions along the trap are
also employed. These states represent quantized eigenstates
and form the normal-mode progressions (somewhat similar to
the vibrational states of naturally occurring molecules). In a
standard setup the trapping potential is harmonic (quadratic)
and the vibrational states are all equidistant, as the states of
multidimensional harmonic oscillator. Frequencies of transi-
tions between these states are usually in the few MHz region,
but selective excitation or control of these states using rf
fields is impossible, because all state-to-state transitions of the
“ladder” have the same frequency and occur simultaneously. In
a standard setup of Cirac and Zoller, the selectivity is achieved
by laser excitation from different vibrational states into the
excited electronic state.

In earlier publications [18,19] we explored an alternative
route for direct adiabatic control of the vibrational states
of ions in a trap. This approach might help to implement
purely vibrational qubits and gates. The idea is to introduce
anharmonicity into the trapping potential in order to alter the
spectrum of the system, which should allow addressing the
vibrational states of ions in trap selectively, through rf fields of
appropriate frequency, amplitude, duration, and phase. In this
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method of control all ions remain in the ground electronic state
and no individual addressing of ions is necessary. The phase
of vibrational motion can also be controlled, which makes this
approach suitable for quantum computation. The time-varying
control fields can be designed using the optimal control theory
(or the feedback loop in the experiment) in order to optimize
the desired control tasks, such as state-to-state transitions,
qubit flips, quantum gates, etc.

In Refs. [18] and [19] we showed that vibrational states of
a single ion can be easily controlled this way if a quartic
potential term is introduced in addition to the quadratic
trapping potential. We carried out the computational studies
and modeling of one qubit encoded into the vibrational states
of a single '''Cd* ion in such an anharmonic trap, with
|0) and |1) states of the qubit being the ground and first
excited vibrational states of the system, respectively. The
optimal control theory was employed in order to “shape” the
control pulses for major quantum gates. Anharmonicity of
the spectrum was characterized by the anharmonicity parame-
ter, A, and it was found that when the value of A reaches ~1%
of the frequency (2/2m = 2.77 MHz),very accurate control
is possible by the simply shaped pulses. The duration of the
predicted pulses was 10 us; the field amplitudes were on the
order of 0.1 V/m. It was concluded that a practical realization
of such a control scenario is within the reach of today’s
technology.

Anharmonicity of the spectrum plays a key role in this
method of control [18-24], but creating anharmonicities in
the vibrational spectrum of a multiple-ion system appears to
be less trivial. In the first paper of this series, Ref. [19], we
considered a three-ion system in a linear trap arrangement
and tried to determine what functional form of the trapping
potential is needed in order to create anharmonicities sufficient
for control (e.g., A ~ 1%<2). It was found that, in the three-ion
case, adding quartic terms to the quadratic trapping potential
does not permit us to achieve the necessary amount of
vibrational anharmonicity. Even if a purely quartic (strongly
anharmonic) trapping potential is used, the normal-mode
progressions of vibrational states remain nearly harmonic
(e.g., A ~ 0.001%S2). This surprising result was explained by
deformation of the normal vibration modes in the nonharmonic
multidimensional potentials [19].
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Further attempts to identify a three-ion system with a
sufficiently anharmonic vibrational spectrum led us to consider
a trapping potential of the following form:

Uz) = —az’ + Bz, (1)

where o and B are two positive numbers. Note that the
quadratic term in Eq. (1) is inverted and represents a repulsive,
nontrapping contribution. By tuning the values of parameters o
and g in Eq. (1), one can create a very flat strongly anharmonic
trap. The shape of such a potential, the equilibrium positions
of three ions, and the equilibrium energy of the system are
shown in Fig. 1(a). The values of & and B are chosen such
that the quadratic term creates a small repulsive “hill” in a
trapping well, dominated by the quartic term. The energy of
the system is well above the top of the hill. Analysis of the
normal vibration modes in such a trap revealed very significant
anharmonicities. The center-of-mass motion mode is the most
anharmonic (A ~ 1%<$2), while the symmetric stretching and
the asymmetric stretching modes are less anharmonic. It
was concluded that this system is a promising candidate for
implementing the direct adiabatic control scenario. Note that
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FIG. 1. (a) Equilibrium positions of ions and minimum energy
of a three-ion string trapped in a flat anharmonic potential of the
form —az? + Bz*. (b) Vibrational spectrum of this system and the
encoding of two-qubit states proposed in this work.
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creating the trapping potentials such as in Eq. (1) is quite
feasible in the experiment [3].

In this paper, the second paper of the series, we study further
the system of three ions in a trap of Eq. (1) [Fig. 1(a)], with a
focus on controllability issues, and explore computationally
the following opportunity. We propose to create a purely
vibrational two-qubit system by encoding the first (control)
qubitinto the states of aless anharmonic asymmetric stretching
vibration mode, while the second qubit is encoded into the
states of a more anharmonic center-of-mass motion mode. The
third mode of this system, symmetric stretching, appears to be
dark and should not interfere. Using the tools of the optimal
control theory, we carry out modeling of this two-qubit system
and derive rf fields for direct adiabatic control of state-to-state
transitions. Pulses for the major quantum gates are obtained
and properties of the qubit transformations in this system are
explored.

This paper is organized as follows: In Sec. II we review
our theoretical framework, including the Hamiltonian of the
system, the method of calculating vibrational states in an
anharmonic potential, the state-to-state transition moment
matrix, and the optimal control theory. Optimization of pulses
for gates NOT, controlled-NOT (CNOT), and the Hadamard trans-
form is presented in Sec. III. Major findings are summarized
as conclusions in Sec. I'V.

II. THEORETICAL FRAMEWORK

A. Eigenstates of the system

For a system of three ions in a linear Paul trap the vibrational
Hamiltonian is [3,19]

Htrap =T+ Vtrap ~+ Veoutomb — Ve, 2
Here the kinetic energy operator is
1 92 1 9?2 1 92
2my 9z 2my 0z5  2m3 075
the potential energy of ions in a trap is
Viep = q1U (1) + @2U (22) + q3U (23), “4)
the Coulomb repulsion energy is

q192 q193 9293
lzo—zil  lzz—zl  lzz—zl

Veoulomb = (5)
and V*® is a constant energy shift described below. A set
of three Cartesian coordinates (z1,22,z3) is used to describe
positions of three ions along the axis of the linear trap. The
radial motion of ions in a trap is considered to be sufficiently
decoupled from the axial motion and is not included in the
model. This is a very reasonable approximation for a flat
trap with a small number of ions. In this work we assume
that all ions are equivalent and use the same masses and
charges: m, = m = 111 amu, the mass of the ''!Cd™ ion, and
gn = q = +1e, its electric charge. The trapping potential U(z)
of Eq. (1) is employed. The values of coefficients « and 8, as
suggested in the previous work, are & = 0.466 MHz/a? and
B =3.912 x 1078 MHz/ag. The energy shift by V27 =
5.359 x 10° MHz in Eq. (2) is used for convenience. Its
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value represents the equilibrium (minimum) energy of the
system:

eq _eq _e eq _eq _e
Ve = Vtrap (Zlq’zzqaz;l) + VCoulomb(ZlqaZQq»Z3q)~ (6)

The equilibrium positions of ions (z}%,z5,25") were deter-
mined numerically using the Newton-Raphson method [19]:
711 = —2.862 x 10%ay, 25 ~ 0, and 23" = 2.862 x 10%ay.

The time-independent Schrodinger equation for this system
is solved numerically. All details can be found in Ref. [19];
only a brief summary is given here. The Hamiltonian of Eq. (2)
is transformed from the Cartesian coordinates (z;,22,z3) to the
normal-mode “unscaled” coordinates (¢1,¢2,¢3) by

21 (w1/w1)¢ zy
2| =A] (@/o)o |+ 5], @)
23 (@1/w3)¢3 z3

using the matrix of normal-mode eigenvectors,

ap ap ap
A=|ayanay|. (3

asy az asz
and the normal-mode frequencies (w;,w,,ws), derived from
the normal-mode analysis at the minimum energy point
(z?q,zgq,zgq). The wave function of the system is expressed in
these coordinates, ¥, (¢1,¢2,¢3), and is expanded in terms of the

three-dimensional direct-product basis set of one-dimensional
harmonic oscillator functions in ¢y, {, and ¢3:

Yo(01.02.83) = Y Coy 01009 (02)0r(23). ©)
ijk

An efficient basis set is constructed using frequencies
(wy,w;,w3) and effective masses (uy,u2,3) of the normal
modes. Numerical diagonalization of the Hamiltonian matrix
in this basis set gives accurate eigenvalues and eigenfunctions.
These were tabulated and are available from Ref. [19].
Analysis of wave functions allowed to assign the normal-mode
quantum numbers (v;,v;,v3) to these states and fit the spectrum
by a multidimensional Dunham formula [25]. Coefficients of

the fit gave us values of frequencies of the system [19],

Qy/2m = 2.738 MHz,

Q,/27 = 54.580 MHz, (10)
Q3/27m = 54.886 MHz,

and the following set of intramode anharmonicities,

A1/2m = —4.361 x 107> MHz,
Ay /2w = 1.106 x 1072 MHz, (11)
Az/2m = —1.371 x 1073 MHz,

for the three normal vibration modes. The intermode anhar-

monicities (couplings) are also important for the control; their
values are

A3/2m = —4.871 x 1072 MHz,
Ap/27 = —1.102 x 1072 MHz, (12)
An3/2m = 3.872 x 1072 MHz.

PHYSICAL REVIEW A 83, 052319 (2011)

From these results we see that mode 1, the center-of-mass
motion mode, is the most anharmonic (A; = 1.6%£2;). We
expect this mode to be the easiest to control and, based
on this property, we choose to encode states of the main
qubit (second qubit) into states of this mode. Mode 3, the
asymmetric stretching mode, is considerably less harmonic
(A3 = 0.003%%23) and would be impossible to control by
itself. However, we can try to employ this mode for encoding
states of the control qubit (first qubit). Note that frequencies
of these two modes are very different, 2.738 and 54.886 MHz,
which should simplify the control. Although it may appear
that the frequency of mode 2, the symmetric stretching mode,
is dangerously close to the frequency of mode 3, it should not
be a problem since mode 2 appears to be dark (see Sec. [ID
below) and should not interfere.

It is reasonable to choose two lower states (the ground
and the first excited vibrational states) of each active mode
to represent states |0) and |1) of the corresponding qubit.
So, the following mapping between the vibrational states of
the three-ion string, labeled by three normal-mode quantum
numbers (vy,v,,v3), and the four states of the two-qubit system
is proposed:

100) < (0,0,0); [01) < (1,0,0);

13)

[10) < (0,0,1); [11) < (1,0,1).

Energies of these states are shown in Fig. 1(b) relative to the
classical minimum energy of the system V. Note that energy
of the ground state (0,0,0) above VI represents the quantum
zero-point energy of the system.

We would like to note that the notions of the normal modes
are used here for qualitative purposes only, mostly for con-
venience of discussion. Their frequencies, anharmonicities,
and the normal-mode quantum numbers are all approximate
moieties. In reality we are dealing with exact eigenstates of the
system, we use numerically accurate values of their energies
and wave functions, and we encode states of the two-qubit
system into these exact eigenstates.

B. Method of control

In order to control the vibrational states of ions in an
anharmonic trap, we propose to apply a time-dependent
electric field £(z,¢) along the axis of the trap. When this control
field is introduced, the full Hamiltonian of the system becomes

H = Hyap + q10(21,1) + @2 P(22,1) + ¢3P(z3,1),  (14)

where
z
O(z,,1) = —/ &(z,,t)dz (15)
0

is the electric potential of the control field at the position
of each ion. The easiest approach for the control is to
create a spatially homogeneous field with the time-dependent
amplitude £(7), which results in a linear control potential with
the time-dependent slope, ®(z,7) = —ze(t), and leads to a
simple expression for the control Hamiltonian:

H = Hyp — (q121 + 9222 + q323)e(0). (16)

052319-3



LEI WANG AND DMITRI BABIKOV

For convenience, we introduce the dipole moment function
of ions as

d(z1,22,23) = 121 + @222 + 4323. (17

Using this definition, the control Hamiltonian of Eq. (16)
can be rewritten as

H = Hyyp — &(t)d, (18)

For the case of three equivalent ions with charge ¢, such as
the system studied in this work, the dipole moment function is
very simple:

d(z1,22,23) = q(z1 + 22 + 23). (19)

C. Optimal control theory

The purpose of computational pulse optimization is to
derive the time dependence (shape) of the control pulse that
permits to achieve the transfer of population from a given
initial, ¢;, to a chosen final vibrational state, ¢ ;. The time-
dependent wave function of the system driven by the pulse is
denoted as ¥ () and, ideally, we want to obtain ¥ (T) = ¢
starting with 1}(0) = ¢;, where T is the duration of the pulse.
In practice, the measure of success of the control pulse is
the value of the overlap |(1ﬂ(T)|d>f)|2 between the actual
final wave function and the wave function of the target state.
The control pulse designed to induce multiple state-to-state
transitions (e.g., different transitions of the quantum gate) can
be assessed by the value of cumulative transition probability,
defined as

1 R
P=—23 [ mlep)l. (20)

Here the index m labels M transitions we want to optimize
simultaneously, 1 < m < M. For example, for optimization
of the gate NOT we can choose |0) — |1) and |1) — |0)
transitions (M = 2) and define qﬁl.(]) = |0), ¢}1) =|1), and

¢fz> =|1), q&(fz) = |0), respectively. For more complicated
gates we have to include more transitions into the simultaneous
optimization procedure. The M transitions chosen for pulse
optimization are sometimes called the training set [26,27].

The optimal control field &(¢) is obtained by maximizing a
multitarget functional defined as [28]

T
J=P —/ a()|e@)|* dt
0

- T 9 -
- ZZRG{(W”(T)|¢}”)/O ("™ (T)liH + Ellﬂ’”(t))dt}.
(21)

The second term in Eq. (21) is included in order to minimize
the energy of the pulse and constrain its smooth switching on
and off. The penalty function a(t) = ag/s(t), where o is a
constant penalty factor and s(t) = sin’(;t/T) is a smooth
envelope function, allows to reduce the field amplitude at
the beginning and the end of the pulse. Minimization of the
last term in Eq. (21) ensures that the evolution of the wave
function obeys the time-dependent Schrodinger equation. H is
the Hamiltonian of the system, Eq. (14).
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Variations of the functional in Eq. (21) with respect to

IZ’”(I), @m(t), and &(t) lead to the following:
(i) a set of M Schrodinger equations,

3 - A = -
i@lﬂm(t) = Hy" (1), ¥"(0) = ¢/", (22)

to propagate M wave functions 1}’”(!) fromt=0tot=T
independently, each with its own initial state ¢!" as boundary
condition;

(ii) a set of M Schrodinger equations,

9 - . -
i@lﬁm(t) = Hy" @), ¥y"(T) = ¢}, (23)

to propagate M wave functions 12”‘([) fromtr=T tor=0
(backward in time) each with its own final state ¢>}’ as boundary
condition; and

(iii) one equation for the universal field that drives all these
2M transitions:

s(t) - e < -

e(t) = ——Imz (WO O) YOIy ().  (24)
(&%)} .

The field e(t) of Eq. (24) is improved iteratively, using

information from the forward and backward propagated wave

functions 1/7’"(t) and 17/ (t) of Egs. (22) and (23). Note that
2M Schrodinger equations in (22) and (23) are coupled only
through the field &(¢) of Eq. (24).

The time propagation of the Schrédinger equation is carried
out numerically by expanding the wave function over the
basis set of system eigenstates (calculated numerically, see
Sec. ITA),

Y6 =Y a ey, (25)

and solving a set of coupled equations for the time-
dependent coefficients a,(t) using the fourth-order Runge-
Kutta method [29].

D. Transition matrix

The integral (@ld |1/7) in Eq. (24) can be expressed through
time-dependent coefficients a,(#) of expansion (25) and
elements of the dipole moment matrix:

My = (Yu(81,82,83) 1d(z1,22,23)] Y (81,62,83)) . (26)

Note that in this formula the wave functions of eigenstates
are expressed, and the integration is carried out, using the
normal-mode coordinates (¢1,2,¢3), while the dipole moment
function, as defined in Eq. (19), is expressed in Cartesian
coordinates (z1,22,z3). The dipole moment function should
be converted into the normal-mode coordinates using the
transformation of Eq. (7):

d=q(z1+220+23)
w1 (]
=g—/(a11 +ax +a31)¢1 +q—(an + an + an)i
wi w)
w1 el el e
+qw—(a13 +an+a)i+ q( + 5T+ 25Y). @D
3

Note that for the system of three equivalent ions the last term
in Eq. (27) vanishes simply because z;* = —z3! and 25! = 0.
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The symmetric stretching mode, mode 2, is characterized by
ajp = —azp and ay; = 0, which means that the second term in
Eq. (27) also vanishes. Thus, the dipole moment function does
not depend on ¢, at all, which means that mode 2 is dark. The
dependence of d(¢1,¢3) on both ¢; and &3 is linear:

®
d(21,83) = q(an +ax +az))d + qw—;(ala + axs + as3)is.
(28)

PHYSICAL REVIEW A 83, 052319 (2011)

Due to different frequencies and properties of the normal-
mode eigenvectors, the slope of d(&;,¢3) for mode 1 is more
than order of magnitude sharper than for mode 3.

The dipole moment function of Eq. (27) and the wave
functions of Eq. (9) are substituted into Eq. (26). Using
properties of the basis set functions [30], the integration in
Eq. (26) is carried out analytically and elements of the dipole
moment matrix are expressed through coefficients Cv,»jkOf the
basis set expansion:

(Vibii1 + i+ 151‘,1"—1)8

M, = (an +ay +az)g ) Cy Cy, . i Ok
v,V %{: Vijk i/jX,k:/ i'j'k /211«10)_1 JoJ
i . (V8.1 T+ 18 -1
+ —(@n+an+tan)g ) C) Cy ’ : IRRINY
w, ,X,k: ijk l;]; Vi jrie /2M2w2
o) (VS w1 + vV + 18p-1)
+—(aiz+axn+ax)g ) C;. Cy,,, : : 8i.indj jr
+ (Ziq + Z;q + qu)q Z C:”k Z Cv’{,j,k, 8,-,;8,,,-/8,{,,(/. 29)

ijk i'j'k

Here (w1,w>,w3) are frequencies and (w1, 42, 13) are effec-
tive masses of the basis set functions [19], i.e., normal modes
of the trap. For the system studied in this work the second and
last terms of this sum vanish exactly (due to properties of the
dipole moment function; see above) and are given here only
for the purpose of generality.

The usual symmetry considerations are applicable to the
transition matrix of Eq. (29). The dipole moment function
d(¢1,¢3) is an asymmetric (linear) function of both ¢; and &3.
Thus, the matrix elements are nonzero only for transitions
between states of different symmetries (e.g., symmetric-to-
asymmetric states and vice versa), leading to the following
selection rules,

Av =41, £3, £5, etc., (30)

for both modes 1 and 3. Since the system is only weakly
anharmonic, the Av = %1 transitions are much brighter than
the Av = £3, £ 5, etc. transitions.

Note that the symmetric stretching mode is dark only
in the case when a spatially homogeneous field is used, as
assumed in this work. Creating a quadrupole potential would
allow controlling the symmetric stretching mode, too. This
opportunity will be studied theoretically and computationally
in a future work.

III. RESULTS AND DISCUSSION

It is understood that it may be difficult to create in the
experiment the time-varying field e(¢) exactly as recommended
by theory, and that the experimental implementation may
have some practical constraints not included into our model.
Still, it is desirable to have a theoretical benchmark of the
approach, before any practical implementation is attempted,

in order to see how difficult or easy would it be to implement
this method of control.

A. Gate NOT on second qubit

For this gate the training set of four transitions was chosen
as

NOT |00) — |01), 3D
NOT |01) — ]00) , (32)
NOT [10) — |11), (33)
NOT|11) — ]10). (34)

Recall that in our approach the qubits are encoded into
collective vibration modes, not into individual ions, and the
control field is applied to the entire system, not to the individual
qubits. For this reason, the state of the first qubit should be
reflected also in the training set of transitions, even if we
are trying to optimize the pulse for controlling just the second
qubit. In this sense our gates are global. The first two transitions
of the training set describe the action of the gate NOT on the
second qubit, with the first qubit being in state |0), while
next two transitions of the training set describe the gate NOT
on the second qubit with the first qubit being in state |1).
Due to anharmonicities, the frequencies of the corresponding
|00) <> |01) and |10) <> |11) transitions are slightly different.

The optimization procedure is not fully automated. The
pulse duration and the maximum allowed field amplitude
should be tuned manually. A number of independent com-
putational experiments were carried out with different values
of the target time in the range between 2 and 20 us and
different values of the penalty factor between 10'! and 10'3.
The following values led to the simplest pulse shape and were
finally adopted for the gate NOT: T=4 us and @ =2.0 x 10'2.
A very large number of iterations, 4000 forward-backward
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FIG. 2. Optimally shaped pulse for the gate NOT.

loops, were needed in order to converge the pulse shape. The
length of the time step in the wave-packet propagation was on
the order of 0.5 ns (9000 time steps in total).

The 4-us pulse derived for the gate NOT on the second
qubit is presented in Fig. 2. The pulse is quite symmetric and
its shape is simple, and the maximum field is achieved in the
middle of the pulse. This shape reflects the envelope function
(see Sec. I C) used to switch the pulse on and off smoothly. The
amplitude of the electric field does not exceed 0.57 V/m. Such
pulses should be relatively easy to produce in the experiment.

Figure 3 shows the evolution of state populations during
the pulse. The four frames of the picture correspond to the
four transitions of the training set. We see that, overall,
the population transfer is quite direct, in the sense that the
population of the initial state(s) is monotonically transferred to
the final state(s), without any reverse transfer. Note, however,
that the system does not behave as an isolated four-state
system of two qubits. The upper states of the normal-mode
progressions can gain some population during the pulse.
Here, the states |02) and |12) are excited most significantly
(populations exceeds 0.1), which can be seen in Fig. 3 without
any magnification. However, the system is well controlled—by
the end of the pulse all of the population is dumped into the
target state(s) of two qubits. The value of cumulative transition
probability, as defined in Eq. (20), reaches P = 0.996.

A Fourier analysis of the pulse in Fig. 2 shows that
its spectrum is dominated by structure in the /27w = 2.7—
3.2 MHz region, which corresponds to excitation of one
quantum of vibration in the second qubit. The structure is
asymmetric. Its most intensive peak corresponds to a frequency
of the |0) <> |1) transition. A wing, composed of series of less
intense peaks, extends into the blue part of spectrum and covers
the |1) < |2), |3) <> |4), and |4) <> |5) transitions, which
means that this pulse is trying to control selectively the ladder
of the transitions (an anharmonic oscillator). Note that all these
transitions are well resolved by the pulse—the widths of peaks
in the spectrum are narrower than the frequency differences.
However, the transitions |00) <> |01) and |10) < |11), etc.,
are not resolved. Frequencies of these transitions are very
close to each other because the anharmonicity of the first
qubit is very small. The widths of peaks in the spectrum are

PHYSICAL REVIEW A 83, 052319 (2011)
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FIG. 3. (Color online) Evolution of state populations during the
gate NOT. The four frames of this figure correspond to the four
transitions optimized as a training set.

much broader than this frequency difference, which means
that the |00) <> |01) and |10) <> |11) transitions are controlled
together, rather than selectively.

The intensity of the signal near the frequency of the |2) <
|3) transition is suppresed relative to others, which explains
why the population of state |3) remains low during the pulse. A
Fourier analysis shows no frequency components near 22 for
the second qubit, consistent with the selection rules of Eq. (30),
and shows only a small intensity near the 3Q2/27 = 8.8 MHz
region, the |0) <> |3) transition in the second qubit, which is
consistent with low population of state |3). Nothing in the
spectrum corresponds to transitions between the states of the
first qubit.

Results obtained with longer pulses indicate that an increase
of the pulse duration leads to a decrease of the field amplitude
and, as a consequence, to a decrease of the population of the
interfering upper states. For example, we found that during
a pulse optimized with 7=20 us the field does not exceed
0.25 V/m, and the populations of states |02) and [12) do
not exceed 0.02, while the cumulative transition probability
reaches P =0.9998.

B. Conditional NOT (CNOT) on second qubit

For the gate CNOT the training set of transitions is

CNoT [00) — |00), (3%
CNOT [01) — [01), (36)
CNOT [10) — |11}, 37
CNOT [11) — |10). (38)
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Experimentation with the pulse duration showed that the 0 . . . —
CNOT gate reguires much longer pulses than the NOT gate. In 0 10 20 30 0 10 20 30
order to obtain an accurate CNOT gate, we had to increase the t (us) t (us)

pulse duration to T=30 ws. The number of time steps for
wave-packet propagation was increased to 18 000. Variation
of the penalty factor revealed an interesting feature. It is
demonstrated below using the results for two pulses, one with
o =6.0 x 10'? and the other with o =8.0 x 10!,

The pulse optimized with a larger penalty factor,
o =6.0 x 10'2, is shown in Fig. 4. This pulse is simply shaped,
symmetric, and consists of two time-delayed subpulses. A
maximum field amplitude of ~0.06 V/m is achieved at ap-
proximately r="7.5 and 22.5 us. The state-to-state transitions
driven by this pulse are shown in Fig. 5. The four frames
correspond to the four transitions of the training set. When
the control qubit is in state |1) the population transfer is
monotonic and is very much direct; see Figs. 5(b) and 5(d).
Only two states of the system are involved and those are
states |10) and |11) of the qubit. Transitions to any upper
states of the system are suppressed. When the control qubit
is in state |0) the population transfer is not monotonic: The
first subpulse creates a superposition state of |00) and |01),
while the second subpulse returns the population back to the
initial state(s), as required by this gate; see Figs. 5(a) and 5(c).
The Cumulative accuracy of the qubit transformation is very
high, P~0.9995. A Fourier analysis of the optimized pulse
shows that only the |00) <> |01) and |10) < |11) transitions
are induced (again, together rather than selectively), while the
frequencies of all other transitions are completely suppressed.
Even the frequency of the |1) < |2) transition in the second
qubit s entirely suppressed, which explains why the population
is restricted to only states |0) and |1) of the qubit.

The fact that the transitions to the upper states of the system
can be suppressed and the population is restricted to only four
states of the 2 x 2 qubit space is very interesting. We believe
that such a high selectivity is made possible by the relatively
low amplitude of the field of the pulse in Fig. 4, leading to
very delicate control of the vibrational excitations.

In order to support this hypothesis we present results
for another pulse, optimized with a lower penalty factor

FIG. 5. (Color online) Evolution of state populations during
the gate CNOT. Low-field regime. The four frames of this figure
correspond to the four transitions optimized as a training set.

a=28.0 x 10", In general, lowering the penalty factor allows
raising amplitude of the field during the optimization proce-
dure. The optimized pulse shape for this case is presented
in Fig. 6. The maximum field amplitude of this pulse is
~0.51 V/m, approximately an order of magnitude higher as
compared to the previous case. The pulse shape is much more
complicated, asymmetric, and containing multiple subpulses
of different amplitudes. This shape reflects the complicated
evolution of state populations presented in Fig. 7. During the
pulse, the populations are exchanged back and forth between
the initial and the final states of the qubit, and are also
transferred to the excited states of the system, |02) and |12).

0.6

0.4

20 30

t(us)

FIG. 6. Optimally shaped pulse for the gate CNOT. High-field
regime.
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FIG. 7. (Color online) Evolution of state populations during
the gate CNOT. High-field regime. The four frames of this figure
correspond to the four transitions optimized as a training set.

Despite a complicated evolution during the pulse, attimet = T
the population is directed toward the target states, leading
to a high accuracy of the qubit transformation, P~0.9996.
A Fourier analysis of this optimized pulse shows a spectral
structure that covers |0) < [1), |1) < |2) and |3) < |4),
transitions in the second qubit, which clearly corresponds to
control of the ladder. The frequency of the |2) < |3) transition
is, again, somewhat suppressed.

Two examples of the CNOT gate presented here suggest that
a careful choice of constraints on the control field, such as
pulse duration and field amplitude, may be necessary in order
to obtain control pulses of desirable accuracy and simplicity.

C. Hadamard transform of second qubit

The training set of transitions for the Hadamard transform
of the second qubit is

HAD [00) — % (100) + 101)), (39)
HAD [01) — % (100) — [01)), (40)
HAD [10) — % (110) +111)), 41)
HAD|11) — %010) —[11)), (42)

1 1
HADZ (100) +101) + [10) + [11}) — 7 (100) + 110)).

(43)

The fifth transition here is the sum of the first four
transitions, and it is included in order to achieve control
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over the phases, which is essential for this gate. Note that
the cumulative probability of Eq. (20) neglects the phases
of transitions, since moduli squared of overlaps are used.
However, the accuracy of gates such as Hadamard should be
measured by a phase-sensitive moiety, such as fidelity, defined
as [31,32]

2

D WDIeR)

m

= (44)

One solution is to replace P by F'in the functional of Eq. (21)
and rederive the equations [31,32], but this approach was not
followed here. A simpler fix to the standard procedure is to
include, in addition to the four transitions of the training set,
one more transition that represents the sum of the previous four
transitions [21,33]. In order to ensure that the phase is indeed
controlled, the fidelity of Eq. (44), rather than the probability
of Eq. (20), should be monitored as a convergence criterion.

Different values of pulse duration and penalty factor were
tried and the following parameters were finally adopted:
a=1.0 x 10'? and T=35 us. The number of time steps was
also adjusted to 55 000.

The optimized pulse is presented in Fig. 8. The pulse
is asymmetric and consists of three subpulses of slightly
different amplitudes. The maximum amplitude of the field
is ~0.13 V/m. The roles of these subpulses are revealed by
analysis of the state populations presented in Fig. 9. The first
subpulse achieves a significant transfer of populations, creating
a superposition state with probabilities close to the needed
50/50, while the second subpulse manipulates the phases of the
optimized transitions (with only a minor population transfer).
The third subpulse finalizes the entire transformation by a
minor transfer of the remaining populations and a fine phase
correction. An analysis of the phase angle of the optimized
transitions supports this conclusion: During the first subpulse,
phases are not controlled at all. The second subpulse reduces
the phase differences monotonically to only ~30°-50°. The
third subpulse reduces the phase differences to less than 4°
at the end of the pulse. The cumulative transition probability
of this Hadamard gate is P~0.998. Its fidelity is slightly lower,
F ~0.990, due to a small residual difference of phases.

0.2

Hadamard

£(V/m)

-0.2 T T T T T T

0 10 20 30
t(us)

FIG. 8. Optimally shaped pulse for the Hadamard transform.
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FIG. 9. (Color online) Evolution of state populations during the
Hadamard transform. The four frames of this figure correspond to the
four transitions optimized as a training set.

A Fourier analysis of the optimized pulse shows two
spectral structures. The first structure is in the /27 = 2.7—
3.0 MHz region (excitation of one quantum in the second
qubit). Here the |0) <> |1) transition is clearly dominant, while
the |1) <> |2) transition is significantly suppressed, consistent
with a low population of states |02) and [12) in Fig. 9. The
second spectral structure is in the /2w = 54.8-54.9 MHz
region, which corresponds to excitation of one quantum of
the first qubit. Transitions between the |0) < |1), |1) < |2),
|3) <> |4), and |4) <> |5) states of the first qubit are covered
by the blue-side wing of this spectral structure. We tend to
state that these transitions are partially resolved because they
all have different intensities, due to the slope of the wing and
some minor oscillations of intensity.

Note that the frequency components that control the first
qubit have not been observed in the optimized NOT and
CNOT pulses discussed above. We found that these frequencies
appear only when we include the fifth transition into the
training set [e.g., Eq. (43)] in order to control phases of the
optimized transitions. The pulses optimized for such truly
coherent manipulations of the qubit states always contain
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frequency components for control of both qubits of the
two-qubit system.

IV. CONCLUSIONS

In this paper we carried out an optimal control study
of a system of multiple ions in an anharmonic linear trap.
The method of encoding qubits into the quantized collective
motional states of the linear ion string was proposed and
explored computationally. The time-varying rf fields were used
to achieve adiabatic control over these states.

Although all ions are identical, the vibration modes of the
ion string are different and the qubits, encoded into these
modes, are also different. A numerical analysis of frequencies
and anharmonicities of the vibration modes was used to iden-
tify the modes most suitable for encoding qubits. It was shown
that in a strongly anharmonic trap, obtained by combining
a repulsive quadratic with attractive quartic potentials, the
center-of-mass motion mode is the most anharmonic. It is most
suitable for encoding states of the main qubit. The control qubit
can be encoded into a less anharmonic asymmetric stretching
mode. The symmetric stretching mode remains dark in our
approach.

The optimal control theory was used to derive pulses for
a set of universal quantum gates. It was shown that if the
parameters of the pulse, such as pulse duration and maximum
field amplitude, are carefully chosen, the qubit transformations
(gates) are accurate and the pulses are simple. The durations
of the pulses obtained were in the 4—40 s range. Amplitudes
of the control fields were on the order of 0.1 V/m.

Only one set of parameters for the shape of the trap was
considered in this paper. It seems feasible, however, to further
increase the anharmonicity of the vibrational spectrum of the
system by changing the parameters of the trapping potential.
Higher anharmonicities, in turn, should simplify control and
allow the derivation of more accurate and shorter gate pulses.
Exploring a system of more than three ions offers more
opportunities. There should be more than one anharmonic
mode that can be efficiently controlled and used for encoding
qubits. These opportunities will be explored in a future
work.
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