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Computational study of cold ions trapped in a double-well potential

Dmytro Shyshlov and Dmitri Babikov
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ABSTRACT

We report a rigorous computational treatment of quantum dynamics of cold ions in a double-well
trap using the time-dependent Schrédinger equation. Our method employs a numerically accurate
approach that avoids approximations, such as assumption of weak coupling between the wells; nor-
mal mode nature of vibrations; or harmonic approximation for energy spectrum of the double-well
system. Our goal is to reproduce, from first principles, the process of energy swaps between the
wells observed in the experiments at NIST [Nature 471, 196 (2011)] and Innsbruck [Nature 471, 200
(2011)]. The model parameters and the initial conditions are carefully chosen to mimic experimental
conditions. We obtain accurate energies and wave functions of the system numerically, and study
the evolution of motional wave packets to provide new insight. This model reproduces experimen-
tal results obtained by NIST and Innsbruck in detail. We explain the energy transfer in terms of wave
packet dynamics in the asymmetric potential energy well. We also show that, for a localised initial
wave packet, this phenomenon can be interpreted using the terms of classical dynamics, such as
trajectory of motion governed by the well-known simple principle: the angle of reflection equals the
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angle of incidence.

1. Introduction

In a typical ion-cooling and trapping experiment [1-5] a
string of multiple ions is confined along the axis of the
trap. Each ion interacts strongly with its neighbouring
ions, and with the potential of the trap, which leads to
the collective vibrational motion of the quasi-linear ion-
string. The typical ion-ion distance in such architecture is
on the order of a few micron, and the trapping potential is
perfectly parabolic (harmonic) at this length-scale. Sev-
eral ions, up to 9 per trap [6,7], can be trapped, cooled
and entangled, to create a quantum information regis-
ter/processor [2,4,8-14]. Further scaling can be achieved
by combining several traps and shuttling individual ions
between the traps [15-18].

An alternative approach to the ion trapping involves a
strongly-anharmonic double-well trapping potential that

is created along the axis of the trap:
V(z) = Bz* — a’. (1)

In recent years this approach was explored, both exper-
imentally [19,20] and computationally [21,22]. The goal
of the experiments was to keep the ions in two separate
wells, at a significant distance, in order to reduce their
Coulomb interaction and create two, almost indepen-
dent, weakly-coupled quantum oscillators. This is qual-
itatively illustrated by Figure 1(a) for the case of two
trapped ions, one in each well of the double-well trap.
Using this architecture, the ion-ion distance can exceed
50 microns. The experiments conducted at NIST [19]
and Innsbruck [20] used Be™ and Ca™ ions, respec-
tively. Other properties of their traps are listed in Table 1.
Note that in each case the potential barrier between the
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V (meV)

Figure 1. (a) Qualitative illustration of the double-well potential
with two ions trapped in the separated wells; (b) Two-dimensional
PES of the system in the Be™ experiment. Two white axis inserted
in the top left corner indicate the normal mode coordinates.

wells is very high. Simple estimates indicate that each
well can maintain on the order of 10° quanta of the
motional/vibrational excitation. One could expect that,
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if the vibrational excitation is low (say within 10 quanta),
the dynamics of the ion motion in two wells should
be entirely independent. However, both NIST and Inns-
bruck groups observed very substantial transfer of the
vibrational energy from one well to another, in spite of
the seemingly weak coupling [19,20].

The goal of our paper is to understand this interest-
ing result by modelling the quantum dynamics of the
system of two ions in the double-well potential as accu-
rately as possible, without making any assumptions con-
cerning the coupling strength or the energy spectrum of
the double-well system. Such rigorous theoretical tools,
including construction of the potential energy surface
of the system and normal mode analysis, are often used
by molecular physicists [21,22]. First, we consider an
accurate potential energy surface of the system, without
a Taylor series expansion of the Coulomb interaction,
and without truncating any higher-order terms. Then
we numerically search for the minimum energy point
on the surface and perform the normal mode analysis.
We avoid harmonic approximation and use the normal
mode frequencies only to set up an efficient basis set for
accurate representation of the wave function. Then we
compute and numerically diagonalise the Hamiltonian
matrix to determine accurate eigenstates of the system
(energies and wave functions). These eigenstates are used
to study evolution of the vibrational wave packets in time
and space. Initial conditions are choosen to mimic the
experiments conducted at NIST and Innsbruck [19,20].

2. Theory
2.1. Parameters of the model

A combination of terms of the second and fourth orders,
as in Equation (1), where o and 8 are two parameters,
describes the double-well trap potential. One of the goals
of our computational work is to reproduce experimental
results by calculations, which requires an appropriate
choice of o and . Unfortunately, they are not directly
measurable in the experiment. So, we have to find the

Table 1. Parameters of the double-well potential and comparison of the system properties in our model with those in the experiments

of Ref. [19] and [20].

Be™ experiment

Ca™ experiment

Measured [19] Model Measured [20] Model

«-10%, meV/um? — 15.525 — 1.167

B:107, meV/um* — 2053 — 8.525
lon-ion distance d, pm 40 38.920 54 52.546

Potential barrier Vg, meV 3 2.935 0.5 0.399
Normal mode frequency, kHz w1/2m 4111.8 4111375 540 536.928
wy /21 41149 4114.600 543 539.177

Mode splitting 8w /27, kHz 3.226 3.22515 2.25 2.249
Energy swap time sy, s 155 155.11 222 222.25
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values of the parameters o and § that reproduce other
measurable characteristics of the experiment, such as
equilibrium distance between the ions d, height of the
potential barrier between the ions Vj, and most impor-
tantly, the system frequencies w; and w,. These can be
described by the average frequency wgye = (w1 + w2)/2
and the splitting §w = w; — wy.

For this, we carried out calculations of d, Vi, waye
and Sw (as explained in the next section) using differ-
ent values of @ and B. We considered 20 values of «
and 20 values of 8, covering 400 combinations in total,
for both the Be™ and Ca™ experiments. Then we anal-
ysed the two-dimensional functions d(«, 8), Vo(«, B),
®ave(e, B) and dw(w, B) using their contour plots and
tried to identify the values of o and B that reproduce all
four experimental characteristics.

For example, in Figure 2(a) one contour line (green) is
given for the equilibrium distance of ions, d, dependent
upon « and B to represent the experimental value of d =
40 wm in the Be™ experiment. This line shows a signifi-
cant slope, which indicates that the equilibrium ion-ion
distance d is quite sensitive to both @ and 8, and that a
number of combinations of « and 8 over a broad range
of values can reproduce the experimental value of d.

Likewise, we plotted one contour line of the («, 8)-
dependence at the experimental value of Vj = 3meV
(light blue), one contour line for wg,. = 27 x 4.113 MHz
(dark blue) and one contour line for dw =27 X
3.226 kHz (red) in the Be™ experiment. All four lines are
shown together in Figure 2(a). We see that different pairs
of curves intersect (six points total) which means that we
can identify the values of o and # that will reproduce
exactly any two experimental characteristics, but not all
four characteristics at the same time, simply because the
four curves in Figure 2(a) do not intersect at the same
point.

However, we can see that in the range of val-
ues o = 1.52 — 1.58 x 10°’meV/um? and B = 1.93 —
2.05 x 10° meV/pwm? all four curves pass close together.
Furthermore, different experimental characteristics dif-
fer in their importance and accuracy [19]. Namely, the
vibration frequencies are measured more accurately than
the geometric parameters of the trap d and Vj. Because of
this, we choose the values of & and § to reproduce nearly
exactly the experimental values of wgy, and §w, while we
reproduce the values of d and V| approximately. The cor-
responding point in the (¢, B)-space is indicated by the
black dot in Figure 2(a) for the Be™ experiment, and sim-
ilarly, in Figure 2(b) for the Ca™ experiment. The values
of o and B chosen for the model are listed in the Table 1.
Deviations of the model values of d and V; from the
experiment can also be estimated using Table 1. Thus, in
the case of Be™ experiment we have approximately three

B - 10° (meV/um*)
T

a-10% (meV/um?)

B - 107 (meV /um*)

a - 103 (meV/um?)

Figure 2. Dependence of system properties on parameters of the
double-well potential in the cases of: (a) Be™ experiment; and (b)
Ca™ experiment. In each case only one contour line is given that
corresponds to the experimental value of the distance between
ions d (green), potential barrier Vq (cyan), average vibration fre-
quency waye (blue), and frequency splitting dw (red). Black dot
indicates the values of potential parameters @ and S that were
chosen to represent the trap in our model. (Colour online.)

percent deviation of the distance d and approximately
two percent deviation of the potential barrier Vj. In the
case of Ca™ experiment we have approximately three per-
cent deviation of d and approximately 20% deviation of
Vo. Larger deviation of the potential barrier Vj in the case
of Ca™ can be explained by the fact that the experimental
value was not really reported in the paper by the Inns-
bruck group [20]. We derived it approximately from the
schematic plot in that paper. All of our model parameters
appear to be within experimental ranges of accuracy.



2.2. Hamiltonian of the system

When the trap parameters have been chosen, the poten-
tial energy of two ions in the double-well potential can be
expressed as follows (in atomic units):

V(z1,22) = Bz} — azt + Bz — azs +

— (2
lz2 — z1]
where z; and z, are Cartesian coordinates of the ions
along the axis of the trap. Equation 2 represents a two-
dimensional potential energy surface (PES) of the system,
V(z1,22). Such PES for the Be™ experiment is visualised
in Figure 1(b) using a colour map. It is symmetric with
respect to the line z; = z; where the energy is infinite,
due to Coulomb repulsion of two ions sitting in the same
position. Overall, there are six potential energy wells on
the PES. Two global minima correspond to the case of
two ions sitting in two different wells, one ion per well.
Two possibilities arise from the permutation of the two
ions, either z; < z or z; > z;. Four local minima at
higher energies correspond to both ions sitting in the
same well. These four possibilities arise from the permu-
tations and the presence of two wells. The PES for the Ca™
experiment exhibits similar features. The ions in the trap
never swap, meaning that the symmetry consequences of
the jon-ion exchange need not be considered here.

We focus on the global minimum in the top left corner
of Figure 1(b) to perform the normal mode analysis cor-
responding to z; < z, (first ion to the left, second ion to
the right). As a first step, we need to find the equilibrium
coordinates of the ions z,; and z, that correspond to this
global minimum, which cannot be done analytically. To
perform numerical minimisation we employ the New-
ton-Raphson method [23] which results in (z.1,2ze) =
(—19.46 wm, 19.46 um) for the Be' experiment and
(Zel» Ze2) = (—26.27um, 26.27um) for the Ca™ experi-
ment. The values of potential energy at the minimum
were V% = —5.8331meV for the Be" experiment and
Ve = —0.7713meV for the Ca™ experiment.

At the stationary point we can perform the normal
mode analysis. Both experiments considered here use the
ions of identical masses (either two BeT, or two Cat
ions). Therefore, the mass-weighted Hessian matrix can
be written as:

1| a2 02 1
- -V -V -
20 ooV 97V 2
. m 0 3212 92102, m 0 (3)
0 m V. P2Vl m
021022 022

From Equation (2), and taking into account that z; < 0
and z; > 0, the elements of the matrix are computed
analytically:

92V

i —20 4+ 128215 +
1,

(z—21) ()
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Vv 2
= — . b
(z2—21)° (4b)

321322

Using Equations (3) and (4) matrix F at the equilibrium
point (2.1, ze3) is obtained:

—20 + 128z 2 + —2— 2

(ze2—201)° (ze2—2a1)°

2 _ 242
(ze2—7e1)? o+ 12pz0" + (zer—ze1)’

5)

Diagonalization of this matrix produces the frequencies

w1 and w; of the normal modes (reported in Table 1) and

their corresponding eigenvectors:

F =

3|~

V22

_ 2 2
A__\/2 ik (6)

2 2

The first column of matrix A corresponds to the centre-
of-mass motion mode, Az; = Az, while the second
column corresponds to the symmetric stretching mode,
Az; = —Az,. Here we defined displacements of ions
from their equilibrium positions as:

Az = z1 — 2zp1, AZy = 25 — 2. (7)

Using a harmonic model, we can predict an approximate
energy spectrum of the system with the normal mode fre-
quencies @] and w;. Table 2 shows these results for both
experiments with Be™ and Ca™ ions, respectively.

The Hamiltonian of the system is written initially in
Cartesian coordinates as:

1 32 1 32

Hzp,z) = ——— — — ——
(21,22) 2m 0z12  2m 0z

+ V(z1,22) — V¥,
(8)

where V(z1,z;) is the potential energy surface from
Equation (2) and V* is the potential energy values of
equilibrium configuration. In order to study the dynam-
ics of the system near the equilibrium point it is conve-
nient, instead of Cartesian coordinates (21, z2), to employ
the mass unscaled normal mode coordinates (¢1, &)

defined as:
A
& AT Z1 , ©)
¢) Az

where AT is transposed matrix A from Equation (6).
Coordinate ¢; describes the centre-of-mass motion mode
and coordinate ¢, describes the symmetric stretching
mode as shown in Figure 1(b). From Equations (7-9) the
Hamiltonian operator in the normal mode coordinates
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Table 2. Predicted energy spectra of two ions in the double-well experiments of Ref. [19,20].

Be™ experiment, kHz

Ca™ experiment, kHz

Normal mode assignment Harmonic Matrix Harmonic Matrix

Energy level (nq,ny) approximation diagonalization approximation diagonalization
1 (0,0 4112.9875 4112.9860 538.05245 538.05227
2 (1,0) 8224.3623 8224.3564 1074.9800 1074.9793
3 0,1 8227.5875 8227.5816 1077.2298 1077.2290
4 (2,0 12335.7372 12335.7247 1611.9076 1611.9061
5 (1,1 12338.9624 12338.9476 1614.1573 1614.1556
6 0,2) 12342.1875 12342.1750 1616.4071 1616.4056
7 (3,0 16447.1121 16447.0907 2148.8352 2148.8326
8 2,1) 16450.3372 164503114 2151.0849 2151.0818
9 (1,2) 16453.5624 16453.5366 2153.3346 2153.3316
10 0,3) 16456.7876 16456.7662 2155.5844 2155.5818

can be derived:

1 92 1 92

. _ 1@ 19 e
H(¢1,82) am e  am ey + V(1. 52) — V5,
(10)
v B n+o\t a+6\
(;1)§2)—:3 Zel — ﬁ - Zel—T
PN
+ ﬂ(zez n Czﬁéﬁ)
2
— 1
—(X<Zez+ ;2 é-l) + .
ﬁ “/5§2+ Ze2 — Zel
(11)

Note that the Coulomb term in Equation (11) depends
on the symmetric stretching coordinate ¢, only, and does
not depend on ¢;, which is consistent with the property
that the centre-of-mass motion, described by ¢;, does
not change the distance between the ions. By removing
parentheses in Equation (11) one can easily check that the
potential V' (1, &2) contains the coupling terms between
the two vibration modes and therefore is non-separable.

We stress that the representation of the Hamilto-
nian operator in the normal mode coordinates is not an
approximation of any sort, but an exact mathematical
transformation used to establish a convenient and effi-
cient basis set. We do not make any assumptions for the
normal mode character of the spectrum, or for separabil-
ity of the PES in these coordinates.

2.3. Basis set expansion and matrix diagonalization

A direct-product basis set expansion is used to represent
wave functions of the system:

N
V(L 8) = ) et ei(6), (12)

i
where ¢;(¢1) and ¢j($2) are one-dimensional basis sets
for the normal mode coordinates ¢; and ¢,, while N is

the number of basis functions, index v labels states of the
two-ion system and has values in the range from 1 to N2,
ci”j are coefficients of linear combination. For each coor-
dinate we employ the basis set of eigenfunctions of the
harmonic oscillator with its corresponding normal mode
frequency:

9i(£12) = Aj - ez Hj(y1,2), (13a)
1 /mwip\1/4
Aj=—( - ) (13b)

2j!
Here ;> are the frequencies of the normal modes, H;
are Hermite polynomials. The standard notations are
used: y12 = y1.281,2, Where y1 5 = ,/mw ;. The number
of basis functions included in our calculations is N = 40
for each degree of freedom.
Elements of the Hamiltonian matrix should be calcu-
lated as:

Hijja = (@i @)@ HlekCD@i1(82).  (14)

The kinetic energy part of the Hamiltonian matrix can be
derived from Equations (10) and (14):

1 2 2
Tijp = o <€0i(§1)<ﬂj(§2) W + @ <Pk(€1)<ﬂl(§2)>
_ 1 o (t1)
= Tom jl<<ﬂz(§1) W>
1 3p1(5)
- %Sik <<Pj(§2) W> (15)

Second derivative of the basis functions can be calculated
analytically from Equation (13):

dH(y1)

(51 _A (32Hk(§’1) e 1o
el

3012 6

0 2 92 2
e (o2 L (o2
aé_l(e %) + Hy(y1) aé_12(6 ! )) (16)



Derivatives of Hermite polynomials can be calculated
using the property:

Hi(y1) = 2kHi—1(y1). (17)

From Equation (17) we can obtain:

Hi(y) = yiH (116 = v1 - 2kHk—1(n161), - (18)

H, (1) = H,(1n121)) = 2kyi(Hk1(y121))
= 4k(k — D) y1*Hx_2(y181)- (19)

Substituting Equations (16,18, and 19) into Equation (15)
we obtain the final expression for matrix elements of the
kinetic energy operator:

1
Tijn = —%5j1(€0i(§1)|Ak(4k(k — Dy’

x Hi_y(n121))e V672

1 2
— 5-0ik(9j (0| A4l — 1)y,
2m
242
x Hi_a(yat2))e 72 12). (20)
Matrix elements of the potential energy operator are:

Viik = (@i(CD@j (01 V (&1 ) lor (D) ei(52)).  (21)

Integrals in Equations (20) and (21) are computed
numerically using the Gauss-Hermite quadrature
method [23]. The potential energy V(¢1,¢2) is, again,
not separable, so, we have to compute double integrals in
Equation (21).

Diagonalization of the Hamiltonian matrix H =T
+ V numerically, using the DSYEV subroutine [24], pro-
duces an accurate energy spectrum of the system. Table 2
presents the resultant energy spectra for both Be' and
Ca™ experiments. For both systems, the energies pre-
dicted by harmonic approximation are very close to those
obtained accurately by diagonalising the Hamiltonian
matrix, with differences in the seventh significant figure.

In order to quantify anharmonicities of the system we
fitted the lower ten energy levels of the accurate spectrum
with a Dunham expansion:

Eyv, =D+ w (Vl + %) + wy (Vz + %)
1\* 1\*
—A1<v1+5) —A2<V2+5)
— An <V1 + l) <U2 + l) . (22)
2 2

Table 3 gives the values of the fitted coefficients. Anhar-
monicites of the two normal modes, A} and A,, are
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Table 3. Coefficients of Dunham expansion (including intra- and
inter-mode anharmonicities) obtained by fitting lower ten energy
levels for the Bet and Ca™ ions in the double-well traps.

Be™ experiment Ca™ experiment

w1/2m, kHz 4111.375 536.928
wy /2w, kHz 4114.600 539.177
Ay /27, Hz 1.0993 0.1292
Ay /2w, Hz 1.1082 0.1339
A1p/2m,Hz 0.18632 0.02364
D/2m,Hz 4.4278 0.5346
Sw/2m, kHz 3.22515 2.249

very similar and tiny compared to the normal mode fre-
quencies, Ay ~ 10~%w1 5. This result is consistent with
the data of Table 2. It appears that the spectrum of the
system is very harmonic, at least at the level of low vibra-
tional excitation (say, 10 quanta), in spite of the fact that
the anharmonic Coulomb interaction is included exactly
without any truncation. The reasons for this property
are further discussed in Sec. 3. We would like to stress
that we carried out a very detailed convergence study
to ensure that accuracy of our predictions of the fre-
quency values (~ 107 2w) is well below the magnitude
of anharmonicities.

2.4. Time-evolution of the system

To model time-evolution of vibrational wave packets,
the numerically accurate wave functions of the system
¥¥(£1, &2) and the values of energies E,, should be used.
The time-dependent wave function of the system can be
expressed as:

VL G) =) bY@, o) B, (23)

where b are probability amplitudes determined by pro-
jecting the initial wave packet ¥ (Az;, Az,) onto eigen-
functions of the system:

b = (¥ (1, Q)Y (Azy, Az)). (24)

Integration of Equation (24) is carried out numeri-
cally using the Gauss-Hermite quadrature method [23].
When probability amplitudes b” are known, the time-
dependent wave function of the system ¥=°(¢1, ) can
be propagated in time analytically using Equation (23).

3. Results and analysis
3.1. Initial state preparation

In the experiments the double-well potential is initially
made asymmetric by applying an additional field in order
to detune vibrational frequencies of the two wells and to
effectively remove coupling between the motion of two
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ions. The initial states of the ions are prepared by first
Doppler cooling both ions and then by the subsequent
sideband cooling only one of the ions. As a result, one ion
(say #1) is produced in the lower vibrational state than
the other ion (say #2). After that, the two potential wells
are brought into resonance and the ions exchange vibra-
tional energy. After time ¢, the resonance of the potential
wells is removed and the vibrational state of the ion #1 is
measured.

In order to model this experimental procedure, we
have to consider the states of individual ions rather
than the states of the overall system. These states of the
individual ions are appropriately described by two local
vibration modes (rather than normal modes) and they
are characterised by displacement coordinates Az; and
Az, for each well. The corresponding wave functions
wl“(Azl) and x/fl"‘(Azz) are introduced for each well,
and the initial state of the system in the experiment is
defined as:

YAz, Azy) = YA Y (Az).  (25)

We use harmonic approximation to define the local mode
states populated in the experiment. The shape of the PES
in the vicinity of the minimum defines the local mode
harmonic frequency wg which is the same for the two

wells:
1 3%V 1 092V (26)
0 m 0z;2 m 09z2

In fact, wy is a diagonal element of the Hessian matrix
before we perform any diagonalization (see Equation
(3)). The value of wqy is 27w x 4112.988kHz for the
Be™ and 27 x 538.054kHz for the Ca®t experiments,
respectively.

Initial conditions of the experiment are given in terms
of the mean occupation numbers for each well [19,20]
and that can be defined as:

(m)=> i-aj,
(ny) = Z]Waf.
j

(27a)

(27b)

At the initial moment of time in the Be™ experiment
(n1) = 0.35and (n;) = 2.3, while in the Ca™ experiment
(n1) = 4 and (n2) = 9. Obviously, those values of mean
occupations can be obtained with different combinations
of the coefficients a; and aj, and the experimental dis-
tributions are not known. Here we test two methods of
generating the initial conditions.

In the first method the initial wave function in each
well is a coherent wave packet, a linear superposition of

small number of harmonic oscillator functions <pl"C(Az):

v (Az) =) aip(Az), (28a)

V(AR) = ) ajgf(Az). (28b)
J

This gives the initial wave function of the system,
expressed as:

YAz, Az) =) aypl(Az)g (Az),  (29)
ij

where a;; = a; - a; are coefficients of the linear combina-
tion, determined by experimental conditions. This initial
wave function ¥ (Az;, Az) should be projected onto
accurate eigenstates of the system " (1, {2) according
to Equation (24), in order to determine the probability
amplitudes b” for the initial wave packet ¥'=°(¢1, &,).
Such projection can be easily computed, since the initial
wave function expressed in the local mode coordinates is
analytic. Its value can be determined at the same quadra-
ture points in the ({1, {3)-space where the numeric wave
function ¥=0(¢y, ¢,) should be defined.

We implemented this first method by setting up the
initial conditions to include the minimal number of states
into the coherent superposition of Equation (28): two
states in each well, closest to the mean value. For exam-
ple, to mimic the Be™ experiment we set a?_, = 0.7 and

az_, = 0.3to have n; = 0.35, whereas we set ajzzz = 0.65

and aj2:3 = 0.35 to have ny = 2.3. This choice gener-
ates the following values of probability amplitudes for
Equation (29): agy = /0.7 - +/0.65, aj;y = /0.7 - /0.35,
a3 = +/0.3 - 4/0.65, and aj3 = +/0.3 - 4/0.35. All other
amplitudes are set to zero. The resultant distribution of
the initial state populations is illustrated by Figure 3(a).

In the second method we set up the thermal Boltz-
mann distribution of the initial states in each well, typical
to what is produced by Doppler cooling in the experi-
ment. For well #1:

e—E,‘/kT
al=-—, (30)
q(T)
g(1) =Y e H, (31)

where E; is the energy of the local mode state, k is Boltz-
mann’s constant, T is thermodynamic temperature (very
low in the experiment), and g is the partition function.
And similar for the well #2. The value of temperature
T was tuned iteratively to reproduce the experimental
value of the mean occupation in each well, as defined
by Equation (27). For example, in order to mimic the
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Figure 3. Initial populations of the local mode states in the Be™
experiment obtained by two methods: (a) superposition of small
number of close-lying states; (b) Boltzmann distribution of state
populations.

Be™ experiment we had to set T} = 146uK for well #1
and T, = 546K for well #2. The resultant distribution
of the initial state populations, determined as aiz- = al-zaz,
is illustrated by Figure 3(b). A comparison of Figure 3(a)
with Figure 3(b) shows that the number of initially popu-
lated vibrational states is significantly larger and the most
populated state is the ground vibrational state.

Note that if initial conditions are set up using the sec-
ond method (thermal distribution of the initial states,
rather than a coherent sum) then several independent
calculations of the dynamics are required, for each ini-
tial local-mode eigenstate (i.e. each populated ‘square’ in
Figure 3(b)):

YAz, An) = 9 (A2 (Az).  (32)

The results of each calculation must be analysed indepen-
dently, as discussed in Sec. 3.2 below, and the final result
is obtained as an average, using the thermal distribution
of weights afj.

The same two procedures were applied to mimic
the initial conditions of the Ca™t experiment. The first
method gave ag = 0.5 and agg = +/0.5. The second
method resulted in T1 = 883uwK and T, = 1871wK.

3.2. Wave packet analysis

At every time step we project the system’s wave function
V'(¢1, ) onto the eigenfunctions of the local vibrational
modes:

as = (P (APl (A W' (C1,0)),  (33)
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From these probability amplitudes the instantaneous
occupations of the two wells, (n}) and (n}), can be com-
puted as:

(34a)

(n)y=> iy lagyl*
j

() = j- > lagl.
j i

We performed calculations with 101 time steps up to
t = 800ps for the Be* experiment and up to t = 1000us
for the Ca™ experiment to obtain the dependence of
mean occupation (n;) as a function of time on reso-
nance. Figure 4 compares our results with experimental
data. In both experiments, the value of the mean occu-
pation for one of the wells (#;) changes periodically with
time on resonance t, demonstrating that the ions in the
two wells of the double-well trap swap their vibrational
energy. More importantly, the amplitude of these swaps is
quite significant. For example, in the case of Be™ experi-
ment, where the initial occupations are only (n;) = 0.35
and (ny) = 2.3, the amplitude of the swap is close to two,
which means that the ions exchange almost all of their
vibrational energy. In the Ca™ experiment the ions swap
close to 5 quanta of energy out of 9 excitation quanta
available in the system. Although the experimental error
bars are significant, particularly in the case of Bet exper-
iment, the number of measurements (snapshots) is also
large, which allows fitting experimental data by an ana-
lytic expression (see Equation (35) below and Appendix
1). Note that in both experiments a non-negligible heat-
ing of the system was observed, and the heating rates
were measured and reported. We also added heating to
the time-dependence of (n}) presented in Figure 4, in
an ad hoc way using experimental values of the rates, as
explained in Appendix 1. This is similar to what was done
in analysis of experimental results [19,20].

Figure 4 demonstrates that our results (dashed pink
line) follow the fit of experimental data (solid blue line
in the frame A and solid black line in the frame B)
almost perfectly, for both Bet and Ca™ experiments.
Both the amplitude and the frequency of the vibrational
energy exchange are well reproduced. Numerical values
of the energy swap time y,, for each case is reported
in Table 1, where the experimentally measured values of
this important characteristic of the process are also given.
To obtain the value of 7y, from our calculations we fit
the rigorously computed (n}) dependence by a simple
analytic expression that describes periodical swap of the
vibrational energy between the ions:

th .0 2 T o\...2f Tt
(n}) = (n)cos (ZTSWP)Jr(ﬂz)Sm (zrswp)’ (35)

(34b)
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Figure 4. Vibrational energy swap between two ions in: (a) the
Be™ experiment [19]; (b) the Cat experiment [20], as a func-
tion of time on resonance. Experimental error bars are indicated.
Solid blue line on plot A and solid black line on plot B show the
fits of experimental data. Pink dashed lines represent our com-
putational results for each case. Experimental data are reprinted
with permission from Macmillan Publishers Ltd: Nature, copyright
(2011).

where the initial well occupations (1Y) and (n9) and
the exchange time 7,,, were the fitting parameters. For
the Bet experiment we obtained 7y, = 155.11js, while
for Ca™ experiment we obtained Tawp = 222.25s. These
values are very close to the experimental values of 155Ls
and 222s, respectively.

Interestingly, analysis of our results reveals a fea-
ture not described in the experimental papers. We
found that in addition to the large-amplitude small-
frequency swaps discussed above (Figure 4), there is also
a higher-frequency lower-amplitude energy exchange
process going on. This is illustrated by Figure 5 for the
case of Be™ experiment. From this picture one can see
that the amplitude of this energy exchange process is only
on order of 0.004 quanta, which would be impossible
to identify in the experiment. The characteristic time-
length of this process is ~ 0.25Ls, which is on order of
1073 x 2Tgp. This time-scale corresponds to the vibra-
tion period and characterises the intra-well wave packet
dynamics, in contrast to the inter-well dynamics pre-
sented in Figure 4. On this time scale the vibrationaly

0.357 —

0.355

(n1>

0.353

0.351 ‘
0.0 0.2 0.4 0.6 0.8 1.0

t (us)

Figure 5. High-frequency low-amplitude oscillations of the
mean occupation (nq) for the case of Be™ experiment.

excited wave packet moves between the turning points
on the PES and the real and imaginary parts of it evolve
according to the phases acquired by its components.

We found that our set up of the initial conditions does
not affect the energy swap dynamics, which is also quite
interesting. On the time scale of Figure 4, two types of
the initial conditions illustrated by Figure 3(a) and (b)
lead to nearly identical time-dependencies of the average
occupation (n}), in spite of the fact that the underlying
dynamics, in terms of time-dependence of state occupa-
tions, is very different. Figure 6 illustrates this feature, for
the case of Be™ experiment. Here we plotted separately
the contribution of every state (i =0, 1,2,3,4and5) to
the average value of (n). Namely, we plotted the time
evolution of different terms in the sum over i in Equation
(34a), after first summing each term over j and the result
being pre-multiplied by the value of i. Two frames of
Figure 6 correspond to two different initials conditions
illustrated by the two frames of Figure 3. From this anal-
ysis we see clearly that although evolutions of state pop-
ulations are very different in two cases (thin lines), the
overall evolutions of average occupations (n}) are nearly
identical. The differences we found are very small, at the
level of 0.005 quanta, which is indistinguishable at the
scale of Figures 4 and 6. As a stress test, we also tried
to vary the initial conditions and we found that all our
results support the following conclusion: the distribu-
tion of state-populations at the initial moment of time
does not affect time evolution of the average occupation
(ntl). However, the initial value of (n‘l)) does affect the
amplitude of energy swaps. This finding may have some
implications for the experimental studies of the process.

Figure 7 illustrates evolution of the accurate two-
dimensional wave function of the system ¥!(¢1,¢) in
the Be™ experiment on the time-scale of two swap times,
0 <t < 2Tg,p. The initial conditions of Figure 3(a) are
used, which gives the initial wave packet presented in
Figure 7(a). The nodal structure of this wave packet
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Figure 6. Evolution of average occupation (black) for the well #1
of the Be™ system when the initial state was prepared by creating:
(a) Coherent superposition of four vibrational states; (b) Incoher-
ent thermal distribution of states; as indicated in Figure 3. Thin
coloured lines represent contributions from five exited states to
the mean occupation. Red, green, blue, magenta and cyan corre-
spond to 1, 2, 3,4 and 5 quanta of excitation, respectively. (Colour
online.)

reveals the distribution of its energy over two local
modes, rather than normal modes. The contour lines of
the PES are also shown in Figure 7(a) (one contour line
per hwy), and one can see that at this length scale the PES
is nearly harmonic and symmetric. We can also see that
the initial wave packet is significantly displaced from the
minimum energy point. Five snapshots of ¥!(¢;, ) are
shown in Figure 7(b). During its evolution the structure
of wave function becomes unusually shaped and rather
diffused, as one sees at t = 7y, /2 and at t = 37,,/2. At
t = Tqyp the wave function is again simple, representing
a mirror image of the initial wave packet and describ-
ing the state at which the local modes (or the wells) have
exchanged their initial states (or excitations). At the final
time ¢ = 27,, the wave function returns to its original
shape, as excitation returns to the well #1.

In order to better visualise and understand this pro-
cess, we created animation of evolution of the wave packet
V'(¢1,¢,) during the characteristic time Towp for the
Be™ experiment. The video file is available for download
from Supplementary Materials [25]. Two versions of the
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process were monitored, that correspond to two choices
of the initial conditions illustrated by Figures 3(a) (in
the Movie 1) and (b) (in the Movie 2). Still, we should
admit that, even after watching these movies it is hard to
come out with simple interpretation for this behaviour.
The time/space evolutions of the wave function in these
movies is not intuitive. Why in Figure 7(b) at t = 74,/2
and then at ¢t = 37,,,/2 the wave function acquires a
half-donut-like shape? This becomes clear in the next
section.

3.3. Other computational experiments

To identify the origin of the energy swaps we carried
out several additional calculations. In one of these we
set up idealised initial conditions, quite different from
conditions of the experiments. Namely, we consider a
situation in which one Be™ ion has no excitation at all
(i.e. in the ground vibrational state i = 0 with (n;) =0
exactly) while the other ion is highly excited, to an eigen-
state j = 10 rather than to a superposition of states, so
that (np) = 10 exactly. Analyzing evolution of ¥(¢1, 2)
in this case we found that such choice of the initial con-
ditions eliminates completely the low-amplitude high-
frequency oscillations of the average well populations
that correspond to the intra-well dynamics, like those
presented in Figure 5. This makes sense, since eigen-
states do not evolve in time. However, the energy swaps
between the wells on the time-scale 7, have survived,
and in this case, we observe a complete transfer of 10
quanta of excitation from one well to the other. This
demonstrates once again that the choice of the initial con-
ditions does not influence the energy swaps. Animation
of the wave packet dynamics for this case is also avail-
able from the Supplementary Materials [25], in the Movie
3. Figure 8 gives several snapshots of the evolving wave
function, which undergoes rather impressive evolution
in this case. Being localised in the vicinity of Az, at the
initial moment of time, the wave function transforms
into a donut at ¢ = tg,,/2 (see Figure 8), after which it
reassembles in the vicinity of Azj at t = 4. It then
transforms back into a donut at ¢ = 37y,,/2, and finally,
att = 2Ty, it returns to its initial shape near Az,. Com-
paring Figure 7 with Figure 8 we find similarities, but in
the case of Figure 8 the transformations are easier to see
because of the specially chosen initial conditions. Still, the
reason for this quite unusual behaviour remains unclear.

In the second computational experiment we elimi-
nate the effect of anharmonicities in the system. For this
we replace the accurately computed spectrum and wave
functions by those obtained from the normal mode anal-
ysis. This is equivalent to approximating the PES by a 2D
paraboloid, a harmonic system with two normal mode
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Figure 7. (a) Square modulus of the initial wave packet for the Be* system prepared as a superposition of small number of states, as
illustrated by Figure 3(a). Contour lines represent the PES of the system; (b) Evolution of this wave packet over the time period 27 y.
Snapshots of wave function are taken at the points indicated by black dots.

frequencies w; and w; and an analytic wave function.
In this case we still observe the inter-well energy swaps,
characterised by basically the same value of ;. This
makes sense, since, as one can see from Table 3, the values
of vibrational anharmonicities in the system are negligi-
ble, even when compared to the relatively small frequency
splitting: A ~ §w x 1072, where §w ~ w;, x 107°.

In the final numerical experiment, we eliminate the
effect of frequency splitting dw, by setting w; = wy =
wo, using the corresponding degenerate energy spectrum
and exactly the same wave functions for both normal
modes. This is equivalent to approximating the PES by
a rotating paraboloid. Our calculations show that this
last change, finally, shuts-off the inter-well energy swaps.
Since the swap time is the inverse of the frequency split-
ting Sw [19,20], this result can be interpreted as w = 0
leads to an infinite Tgy,.

To understand this result better we computed evolu-
tion of a Gaussian wave packet for two idealised cases
mentioned above: a perfectly symmetric well (w; = w3)
and a weakly asymmetric well (w; # w;). In each case
the shape of the initial Gaussian was equivalent to the
ground vibrational state, while the displacement off the
equilibrium position was chosen to give (n;) = 0 exactly
and a large value of (ny) ~ 12. Figure 9 illustrates this
choice, when the initial position of the Gaussian wave
packet is in the upper left corner, on the axis Az, (com-
pare to Figure 7(a)). Again, this initial condition is quite
different from that in the experiment, but it results in
a simple evolution of the wave packet, which demon-
strates the underlying principle. The dynamics is simple
in this case because Gaussian wave packet in a harmonic
potential remains localised during its evolution, and thus
its motion can be easily interpreted by the means of a
classical trajectory. Animation of such trajectory is avail-
able from the Supplemental Material [25] (the Movie 4)

and is explained below. We encourage readers to watch
the animation prior to reading further. It shows that
after several cycles of reflection the trajectory transforms
from a straight line at t = 0 into a circle at t = 7y, /2,
which explains the appearance of those donut-shaped
wave functions in Figures 7 and 8.

Figure 9(a) explains the evolution of the Gaussian
wave packet in the case of a perfectly symmetric well
(w1 = wy). The wave packet starts in the upper left cor-
ner, moves to the centre of the well, then climbs up to the
turning point (lower right corner), where it is reflected.
Since the PES is perfectly round in this case, the wave
packet is reflected straight back (along the diameter) and
returns exactly to its initial location. This cycle repeats
again and again, and the wave packet stays on the Az,
infinitely long. No motion along Az; occurs which means
that no energy is transferred to the other well, and the
value of (n;) = 0 remains unchanged.

Figure 9(b) explains evolution of the same initial
Gaussian wave packet in the case of a slightly asymmet-
ric well with w; < wy. Asymmetry of the contour lines
of the PES is exaggerated in Figure 9(b), for the pur-
pose of clarity. Of importance is that the initial wave
packet will follow the gradient of the PES, and its tra-
jectory will start to deviate from the axis Az, simply
because in the case of w; # w; the contour lines are
ovals, rather than circles (compare Figures 9(a) and (b)).
When the wave packet hits its first turning point (in the
lower right corner) it is reflected back towards its ini-
tial position. Notice that at the turning point the contour
line of the PES is not perpendicular to the momentum
vector. Even if one thinks classically, assuming that the
angle of reflection equals to the angle of incidence, one
concludes that the wave packet will not return to its orig-
inal position, but to a slightly different point. Namely,
its new position will be slightly above the axis Az, (see
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Figure 8. Several snapshots of wave packet evolution for the
computational experiment with the initial state (0,10) that corre-
sponds to significant excitation of the second ion, with the firstion
being inits ground state. The snapshots show the square modulus
of the wave packet. Snapshots B, C, D and E are taken at moments
of time Yt sp, V2T swp, 34T swp and Ty, respectively.
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Figure 9. Explanation of the Gaussian wave packet dynamics in
the cases of: (a) a perfectly symmetric well with w1 = w;; and
(b) an asymmetric well with @17 w,. Contour lines of the PES
are shown schematically by thin lines. The local mode axis Az;
and Az, are indicated by dashed lines along the diagonals of
the (¢£1,¢2)- space of the normal mode coordinates (compare
to Figure 7(a)). The initial wave packet is shown by colour. Red
dashed circle shows the wave packet at the time of its reflection
at the turning point. Upper frame illustrates that trajectory of the
wave packet remains restricted to the diagonal line (the axis Az;)
because the contour lines are perpendicular to the incidence vec-
tor. Lower frame shows that trajectory deviates from the axis Az
(towards another diagonal line, which is the axis Az;), due to
potential gradient, and, when reflected back, does not return to
the initial point.

Figure 9(b)), which corresponds to some motion along
Az, which also means some increase of (#n;) and some
energy transfer to the other well.

Notice that each reflection gives the wave packet some
angular momentum with respect to the origin. As time
passes the trajectory evolves from a nearly straight line
(along axis Az, at the initial moment of time) into an
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elliptic orbit in the (Az;, Azy)-space, with the longer
principal axis positioned along Az, and the shorter axis
positioned along Az;. Figure 9(b) suggests that the wave
packet follows this orbit in the counter clockwise direc-
tion. When time reaches t = 7,,/2 the orbit becomes
perfectly circular, after which, it starts to lose the angu-
lar momentum (again, due to the classical reflection
principle), transforming into an elliptical orbit. Now the
longer principal axis lies along Az;, and the shorter axis
lies along Az;. When time reaches t = 7y, this ellipse
degenerates into a nearly straight line along Az;. Because
all the angular momentum is lost, a complete energy
transfer occurs between the wells. Then the process plays
back, with the wave packet rotating clockwise.

Since the frequency difference in the system is very
small, o ~ w;y X 1073, the asymmetry of the PES is
also very small. One reflection of the wave packet makes
very little change. It takes more than 10> reflection cycles
to ‘turn’ the trajectory by 90°, from the axis Az att =0
to the axis Az at t = 7y, which means that the energy
transfer is very inefficient. The origin of this phenomenon
is in the well-known classical principle: the angle of
reflection equals to the angle of incidence.

4. Conclusions

We proposed a rigorous computational treatment for
quantum dynamics of cold ions in a double-well trap
using a numerically accurate approach, without mak-
ing any assumptions concerning the coupling strength
between the ions, and without involving the harmonic
approximation for energy spectrum of the system. The
goal was to reproduce, from first principles, the pro-
cess of energy swaps between two wells observed in the
experiments at NIST [19] and Innsbruck [20]. The model
parameters were carefully chosen to mimic experimental
conditions. Vibrational anharmonicities, due to the com-
bination of Coulomb interaction and a strongly anhar-
monic trapping potential, were accurately computed and
were found to be very small, which is explained by the
small amplitude of the vibrational motion of the ions.
Experimental results of both NIST and Innsbruck groups
were reproduced in detail. In addition, we provide new
insight by analyzing the wave packet motion and the
time-evolution of state populations. We show that the
energy swaps are basically a classical phenomenon that
can be understood using the principle of trajectory reflec-
tion, at least for the localised initial wave packets. A rig-
orous solution of time-dependent Schrodinger equation
supports this interpretation.

The model developed in this work can be used to
study theoretically the new experiments at NIST [26,27].
It can also help to explore new schemes for the coherent

and optimal control of the ionic motion in the double-
trap architectures [28,29]. For example, one could com-
putationally test various possible shapes of the double-
well trap potential, as alternative to the simplest shape
of Equation (1), with the goal of identifying the archi-
tectures that possess some desirable properties, such as
increased or suppressed efficiency of the energy swaps
between the wells. One may also think of adding an
additional control field to the trap, in order to alter the
effective barrier height between the wells, which would
result in the modified properties of the spectrum (anhar-
monicities, and the detuning §w). Moreover, such control
field could be made time-dependent and shaped opti-
mally for maximising the probabilities of certain state-
to-state transitions, and minimising the others [21,22].
These aspects will be addressed in the future work.
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Appendix 1: Including the heating rates of the
trap

In the Bet experiment at NIST [19] the vibrational energy
exchange between the wells was accompanied by a linear
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growth of the mean occupation with time, due to the heating
of the ions. This heating was included in the expression that
was used to fit the experimental data as follows:

(n)exp = (n))cos®(Qupt) + (n3)sin® (QLsupt) + (M)t, (A1)

where (7) is the heating rate for both wells and 25y = 7/274p
is experimental swap frequency. The fit of experimental data
was done with four free parameters: the initial average occupa-
tions of two wells <”(1)) and (ng), the exchange frequency Q2
and the heating rate (11). The value of the heating rate obtained
from the fit was (1) = 1,885 quanta per second.

In our calculations the heating of the ions cannot be directly
included in the time propagation of the wave function of the
system. We can mimic the experiment by computing:

<nt1>exp = <ni> + (m)t, (A2)

where (ntl) is the result of our calculations without heating,
as defined by Equation (36a) and fitted by Equation (37), and
(n) is the experimental heating rate. This moiety, (ni)exp, was
computed and presented in Figure 4(a) for comparison with
experimental results.

Likewise, the heating of the ions was observed in the Ca*
experiments in Innsbruck [20] with the heating rate of (1) =
1.3 quanta per millisecond. But in addition, their data were also
affected by the exponential damping of the energy swap effi-
ciency with time. Their fitting expression included both these
factors as follows:

(M) exp = (n) + §(<n3> — (M)A = cos2Qyypt))e " Time

+ (n)t, (A3)

where 74, is the damping constant. The value of this param-
eter obtained from the fit of experimental data was Ty =
3ms.

Expression (A3) can be rewritten as follows:

(M) exp = (1Y) + ((n3) — (n)))sin® (QypT)e ™/ e + (i)
= ((n)cos? (Quupt) + (n3)sin? (QLuypt))e "/ Tmp
+ (1)) (1 — ey 4 (i) (A4)

From Equation (A4) we see that we can take into account both
damping and heating terms as follows:

(M) exp = (b)) 4 (n) (1 — e "/™m) + (R)t.  (A5)

Again, here (n}) is the result of our calculations without heat-
ing, as defined by Equation (36a) and fitted by Equation (37),
while (#) is the experimental heating rate and 74y, is the exper-
imental damping constant. This moiety (1} )exp corresponds to
the Innsbruck experiment. It was presented in Figure 4(b) for
comparison with experimental results.

The issue of noise in the ionic trap [30-32] was not covered
in this work in detail. In the future, a simulation in Liouville
space with Lindblad approximation could be implemented in
order to account for the noise.



	1. Introduction
	2. Theory
	2.1. Parameters of the model
	2.2. Hamiltonian of the system
	2.3. Basis set expansion and matrix diagonalization
	2.4. Time-evolution of the system

	3. Results and analysis
	3.1. Initial state preparation
	3.2. Wave packet analysis
	3.3. Other computational experiments

	4. Conclusions
	Acknowledgments
	Disclosure statement
	Funding
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [609.704 794.013]
>> setpagedevice


