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ABSTRACT: The mixed quantum classical theory, MQCT, for inelastic
scattering of two molecules is developed, in which the internal (rotational,
vibrational) motion of both collision partners is treated with quantum
mechanics, and the molecule−molecule scattering (translational motion) is
described by classical trajectories. The resultant MQCT formalism includes a
system of coupled differential equations for quantum probability amplitudes,
and the classical equations of motion in the mean-field potential. Numerical
tests of this theory are carried out for several most important rotational state-
to-state transitions in the N2 + H2 system, in a broad range of collision
energies. Besides scattering resonances (at low collision energies) excellent
agreement with full-quantum results is obtained, including the excitation
thresholds, the maxima of cross sections, and even some smaller features, such
as slight oscillations of energy dependencies. Most importantly, at higher
energies the results of MQCT are nearly identical to the full quantum results,
which makes this approach a good alternative to the full-quantum calculations that become computationally expensive at higher
collision energies and for heavier collision partners. Extensions of this theory to include vibrational transitions or general
asymmetric-top rotor (polyatomic) molecules are relatively straightforward.

I. INTRODUCTION

Inelastic scattering of two gas-phase molecules is a fundamental
physical process important in the atmosphere,1 combustion,2

laboratory experiments,3 and outer space.4 The simplest version
of the process is a rotationally inelastic collision where just the
rotational state of one collision partner changes (rotational
excitation or quenching), but the processes where the rotational
states of both partners change (quasi-resonant energy transfer)
are also important.5 Often, the low-energy vibrational states
(bending, torsion) participate in the process too, leading to
the coupled ro-vibrational transitions.6 In the processes where
the collision energy is high, so that the vibrational excitation is
significant, the collision-induced dissociation of the molecule
may occur,7 which is also an example (the limiting case) of the
inelastic scattering.
Theoretical and computational description of these processes

is a challenging task. The exact quantum mechanical treatment
of rotational transitions usually employs the coupled-channel
(CC) formalism developed in 1960s.8 This approach had
great success in simple systems. Thus, CC calculations for
collision of a diatomic molecule with an atom are very efficient
and computationally affordable, even at higher energies and for
heavier molecules and quenchers.9 However, CC calculations for
a triatomic molecule + atom are much more demanding.10 The
diatomic + diatomic11 and the triatomic + diatomic5 calculations
are computationally challenging, especially for heavy molecules
and at higher energies.12 To make them more affordable, the
coupled-states (CS) approximation is often employed,10 which

neglects transitions between different m-states, within the same
rotational energy level. Still, the quantum CC calculations for
rotational transitions in triatomic + triatomic systems, such
as H2O + H2O collisions at room temperature, remain com-
putationally unaffordable. Inclusion of vibrational states (in
addition to the rotational states) is possible within the CC
formalism,13 but such ro-vibrational calculations are even more
demanding.
Thus, the range of applications of the quantum approach

remains limited to simple molecules (small number of internal
quantum states), light masses, and low collision energies (small
number of the partial scattering waves). The classical trajectory
method, on the other side, is applied to larger systems at
high scattering energies to study the collisional energy transfer.14

This method is quite affordable computationally, but several
flaws of the purely classical approach are also well-known.
Among them are zero-point energy leakage,15 inability to
incorporate symmetry restrictions into state-to-state transi-
tions,16 absence of tunneling,17 or scattering resonances.18

It is an old idea to combine classical mechanics with quantum
mechanics in a mixed (or hybrid) approach to the inelastic
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scattering to use benefits offered by both classical and quantum
frameworks, and trying to avoid the disadvantages of both.
It would be attractive to use quantum description of the inter-
nal quantized states of the molecules (the vibrational and/or
rotational motion), whereas classical mechanics is employed for
description of the translational motion of collision partners (the
scattering process). In this way, the quantum treatment of
continuum motion is avoided, leading to significant computa-
tional advantage, but the state-to-state transitions are described
rather rigorously, including many quantum effects, such as level
quantization, zero-point energy, symmetry of wave functions and
associated selection rules, etc.
Some early references on implementations of these ideas date

back to the work of McCann and Flannery in 1970s,19,20 but the
most popular and noticeable quantum/classical approach
appeared in the 1980s and 1990s due to the work of Billing.21,22

He introduced two different versions of the quantum/classical
theory. His major focus was on the method for description of
ro-vibrational processes, where quantum mechanics is used for
description of the vibrational motion only, whereas classical
mechanics is used for both the translational motion of the
collision partners and for their rotational motion. When
thinking about this approach, we can draw a useful parallel
with statistical mechanics. Namely, for statistical description of
molecular processes the translational and rotational partition
functions are normally computed in the high-temperature
limit (equivalent to the classical limit), whereas the vibrational
partition function is always a sum over the quantized states.
Thus, the mixed quantum/classical approach of Billing is well
justified for many molecular systems in a broad range of
collision conditions. It was applied to several model systems
and several simple real systems22 and showed great promise.
Unfortunately, due to the tragically early death of Billing in
2002,23 the quantum/classical approach remained not fully
developed and this research direction was, basically, aban-
doned, for a while.
The opportunity of using a mixture of quantum and classical

mechanics was called to memory only recently,24−26 for the
studies of ozone formation reaction O + O2 + Ar, which is a
recombination reaction that includes formation and stabilization
of highly excited ro-vibrational states of O3, or scattering reso-
nances, a very complex process for which no standard approach
or well-developed method exist. This interesting application
stimulated a new round of theory developments,27,28 including
the second version of quantum/classical theory, with emphasis
on quantum treatment of rotation.29 In his early work, Billing also
developed a method where the rotation of a diatomic molecule
(treated as rigid rotor, no vibration) was described quantum
mechanically, whereas the scattering of an atom off the diatomic
was treated classically.30 Surprisingly, one can find very limited
applications of this method in the literature. Billing himself
applied it to just one simple system, He + H2, at just two
scattering energies, looking at transitions between the lowest
energy levels only.22,30 Although his results were encouraging,
more detailed studies have never been pursued, to the best of
our knowledge. One reason for this could be that at that time
the full-quantum scattering calculations (to compare with) were
also quite limited. In any case, this second mixed quantum/
classical method, focused on the quantum treatment of rotation,
was abandoned as well.
The mixed quantum classical theory (MQCT) we developed

recently is similar to this second method of Billing in many
respects. We also describe the rotational motion quantum

mechanically, by expanding the rotational wave function over the
basis set of rotational eigenstates with time-dependent expansion
coefficients, and we also describe scattering of collision partners
using classical trajectories, driven by the mean-field potential.
However, we went much further in theory development, testing,
and applications. First of all, we worked out the MQCT
formalism in both the space-fixed (SF) reference frame and the
body-fixed (BF) reference frame29 and carried out calculations
on a model system to demonstrate that both versions are
physically equivalent and both theories, equations, and computer
codes are correct. We quickly learned that the SF version of
MQCT is numerically inefficient,31 because the corresponding
state-to-state transition matrix (which governs evolution of the
rotational wave function) is complex-valued with dense structure
and each matrix element dependent on three classical variables
(that evolve along the collision trajectory). Luckily, we found that
the BF version of MQCT, in contrast, involves a real-valued
sparse state-to-state transition matrix with simple bock-diagonal
structure, and each element is dependent on the molecule-
quencher separation onlyjust one classical variable.29 In the
work that followed32−35 we demonstrated that this BF version of
MQCT is numerically efficient.
For example, for the fully coupled MQCT the scaling law,

which is computational cost vs number of channels, is n2.5, and
this is only slightly better than n3 scaling of the full-quantum CC
calculations.34,35 Note, however, that here n is the number of
included rotational energy levels at one representative collision
energy, and it should not be forgotten that the cost of converging
the full-quantum calculations with respect to the number of
partial waves also increases when the collision energy is raised,
leading in practice to the total cost in the range of n5 to n6. In
contrast, MQCT has no such “overhead”, because scattering of
the quencher is treated classically. Thus, the scaling properties of
MQCT are superior, and the advantages are particularly
significant for heavier collision partners and at higher collision
energies. Interestingly, within MQCT one can also formulate
the CS approximation,33 which gives another source of speed-up,
by a factor of roughly ×20.35 It is worth noting that Billing used
only such CS version of his quantum classical theory, whereas our
focus is on the fully coupledMQCTapproach, which appears to be
surprisingly accurate when compared to the full-quantum CC
method.
To access the accuracy of MQCT, we conducted very detailed

and hierarchical benchmark studies for several real molecule +
atom systems. We applied it to heavy and light collision partners,
at low and high scattering energies in a broad range, to study
rotational excitation and quenching, of the low-lying and highly
excited rotational states, computing total and differential, elastic
and inelastic cross sections, and we even looked at the simplest
ro-vibrational transitions. We started with diatomic + atom
systems and studiedN2 +Na

32,33 andH2 +He.
33 Then wemoved

to the symmetric top rotors, such as CH3 radical and NH3
collided with He (unpublished) and, finally, extended MQCT
to treat the general case of an asymmetric top rotor + atom.
This was applied to H2O + He34 and, most impressively, to
HCOOCH3 + He,35 which is the largest molecule (methyl
formate) ever considered for the inelastic scattering calculations.
In all these systems we saw that at higher collision energies
MQCT gives results nearly identical to the full-quantum results
and remains computationally cheap (e.g., up to collision energies
of 10 000 cm−1 in the case of H2O + He).34 At low collision
energies the excitation thresholds are predicted correctly (e.g., in
N2 + Na)32,33 and, the results of MQCT remain reasonably
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accurate down to collision energies of just few wavenumbers.
We also learned how to use phase information to reproduce
quantum interference and construct the differential over
scattering angle cross sections (e.g., in N2 + Na)32,33 but still
have to find a way to describe scattering resonances. This seems
to be feasible,36 but at present we simply remove the orbiting
trajectories, and focus on nonresonant contribution to cross
sections (e.g., in HCOOCH3 +He).

35 Importantly, we never saw
MQCT failing miserably.
This paper is focused on another important development of

MQCT: its extension onto the molecule + molecule systems,
the case that is particularly demanding to treat computationally
using the full-quantum approach. There are many important
molecule + molecule systems that could be studied using
MQCT, including small organic molecules and linear carbon
chains relevant to astrophysical environments collided with H2,

4

small polyatomic molecules in the atmosphere collided with O2
and N2, and triatomic molecules collided with H2O, including
water−water collisions.
The paper is organized as follows. In section II we outline the

theory for MQCT calculations of scattering of two diatomic
molecules. In section III we present numerical results for N2 +H2
system. Conclusions are given and future research directions are
discussed in section IV.

II. THEORY
II.1. Quantum and Classical Degrees of Freedom.

Consider collisions of two molecules: Molecule 1 is AB and
molecule 2 is CD, as shown in Figure 1. Classical variables that

describe molecule−molecule scattering are three coordinates
(R, Θ, Φ) of the vector Q that connects the centers of mass of
two molecules. Quantum degrees of freedom are four angles
(θ1, θ2, φ1′, φ2′) needed to describe positions of two diatomics
with respect to vector Q (i.e., in the BF reference frame). As in
the earlier paper29 we use primed variables and indexes for the BF
reference frame (e.g., φ′,m′), to distinguish from those in the SF
reference frame. The interatomic distances r1 and r2 are
considered to be fixed for simplicity (rigid rotors), but they
can be easily introduced into the formalism for description of ro-
vibrational processes, just as it was done in our earlier work on
the molecule−atom systems.29

Rotation of each molecule is quantized and is described
by the corresponding rotational eigenfunction, Yj1

m1′(θ1,φ1′)
and Yj2

m2′(θ2,φ2′) for molecules 1 and 2, respectively (spherical
harmonics in the BF). The total angular momentum of two
molecules j12 = j1 + j2 is also quantized. The corresponding
eigenfunctions can be expressed through spherical harmonics as
follows:37

∑
θ θ φ φ

θ φ θ φ

Υ ′ ′

= ⟨ ′ ′| ′ ⟩ ′ ′

′

′ ′

′ ′j m j m j m Y Y

( , , , )

( , ) ( , )

j j j
m

m m
j
m

j
m

1 2 1 2

1 1 2 2 12 12 1 1 2 2

12 1 2

12

1 2
1

1

2

2

(1)

The total time-dependent wave function for the quantum part
of the system can be expressed as

∑
ψ θ θ φ φ

θ θ φ φ

′ ′

= Υ ′ ′ −
′

′ ′

t

a t E t

( , , , , )

( ) ( , , , ) exp{ i }
j m j j

j j j
m

j j j
m

j j

1 2 1 2

1 2 1 2
12 12 1 2

12 1 2

12

12 1 2

12

1 2
(2)

where aj12j1j2
m12′ are time-dependent expansion coefficients, and

atomic units are used for energy. The range of values of j1 and j2 in
this sum defines the basis set size for description of two quan-
tized rotors (e.g., 0 ≤ j1 ≤ j1

max and 0 ≤ j2 ≤ j2
max). It depends on

physical properties of the system and is a convergence parameter.
The value of j12 varies in the range |j1− j2|≤ j12≤ j1 + j2. The value
of m12′ varies in the range − j12 ≤ m12′ ≤ j12.
To avoid confusion, we want to emphasize that j12 is not the

orbital angular momentum of the motion of one molecule with
respect to the other. The orbital motion (scattering) is described
classically in this formalism and is not quantized. It should also be
stressed that the four-dimensional functions Υj12j1j2

m12′ (θ1,θ2,φ1′,φ2′)
play an accessory role only and do not enter into any final
equations of motion (derived below). But, if needed, they can be
obtained from eq 1 using spherical harmonics and Clebsch−
Gordan coefficients and visualized as we have done in the TOC
graphic, which represents the component j12 = 2, m12 = 0 for the
collision of AB(j1 = 2) with CD(j2 = 0).

II.2. BF Transformation of Wave Functions. The key
point of the BF formulation of MQCT is to describe how
the function (2) evolves due to rotation of the intermole-
cular axis, described by Q , in the course of molecule−
molecule scattering. For this, we express rotational eigenstates
of the molecules 1 and 2 in the BF frame through the rotational
eigenstates in the SF frame using WignerD-matrices (see eq 17
in ref 29):

∑θ φ θ φ′ = Φ Θ′
′Y D Y( , ) ( , ,0) ( , )j

m

m
m m
j

j
m

1 1 1 11

1

1

1 1
1

1

1

(3a)

∑θ φ θ φ′ = Φ Θ′
′Y D Y( , ) ( , ,0) ( , )j

m

m
m m
j

j
m

2 2 2 22

2

2

2 2
2

2

2

(3b)

Here, as in the earlier paper,29 we use unprimed variables
and indexes for the SF reference frame (e.g., θ, m). Substitution
of eqs 3a and 3b into eq 1 gives

∑
θ θ φ φ

θ φ θ φ

Υ ′ ′

= ⟨ ′ ′| ′ ⟩ Φ Θ

× Φ Θ

′

′ ′
′

′

j m j m j m D

D Y Y

( , , , )

( , ,0)

( , ,0) ( , ) ( , )

j j j
m

m m m m
m m
j

m m
j

j
m

j
m

1 2 1 2

,
1 1 2 2 12 12

1 1 2 2

12 1 2

12

1 2 1 2

1 1
1

2 2
2

1

1

2

2
(4)

The product of two Wigner D-functions in this formula can be
simplified as follows (see eq 4.4.1 in ref 38):

∑ ∑ ∑

Φ Θ Φ Θ

= ⟨ ′ ′| ⟩⟨ | ⟩ Φ Θ
=| − |

+

=− =−

′ ′D D

j m j m jm j m j m jk D

( , ,0) ( , ,0)

( , ,0)

m m
j

m m
j

j j j

j j

m j

j

k j

j

km
j

1 1 2 2 1 1 2 2

1 1
1

2 2
2

2 1

2 1

(5)

Figure 1. Classical and quantum variables for description of in-
elastic collision of two diatomic molecules in the body-fixed reference
frame.
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Substitution of eq 5 into eq 4 gives

∑

∑ ∑ ∑

θ θ φ φ

θ φ θ φ

Υ ′ ′

= ⟨ ′ ′| ′ ⟩ ×

⟨ ′ ′| ⟩⟨ | ⟩
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′
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=| − |

+

=− =−

j m j m j m

j m j m jm j m j m jk

D Y Y

( , , , )

( , ,0) ( , ) ( , )

j j j
m

m m m m

j j j

j j

m j

j

k j

j
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j

j
m

j
m

1 2 1 2

,
1 1 2 2 12 12

1 1 2 2 1 1 2 2

1 1 2 2

12 1 2

12

1 2 1 2

2 1

2 1

1

1

2

2
(6)

Note that in the SF reference frame one could write an
expression analogous to eq 1, written for the BF reference
frame, namely

∑
θ θ φ φ

θ φ θ φ

Υ

= ⟨ | ⟩j m j m jk Y Y

( , , , )

( , ) ( , )

jj j
k

m m
j
m

j
m

1 2 1 2

1 1 2 2 1 1 2 2

1 2

1 2
1

1

2

2

(7)

Comparing eqs 6 and 7, we can establish transformation of
the total wave functions Υ between the BF and SF reference
frames:

∑

∑ ∑ ∑

∑ ∑ ∑

∑

θ θ φ φ

θ θ φ φ

θ θ φ φ

Υ ′ ′ = ⟨ ′ ′| ′ ⟩
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+
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j
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j
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1 2 (8)

The last term of this expression can be simplified using the
closure relation:

∑ ⟨ ′ ′| ′ ⟩⟨ ′ ′| ⟩ = ⟨ ′ | ⟩
′ ′

j m j m j m j m j m jm j m jm
m m

1 1 2 2 12 12 1 1 2 2 12 12

1 2

which converts eq 8 into the following form:

∑ ∑ ∑

∑ ∑ ∑

∑

θ θ φ φ

θ θ φ φ

θ θ φ φ δ δ

θ θ φ φ

Υ ′ ′
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′
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=− =−
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To simplify the notation, we can leave out the range of the index
k, which gives the following final formula:

∑θ θ φ φ θ θ φ φΥ ′ ′ = Φ Θ Υ′
′D( , , , ) ( , ,0) ( , , , )j j j

m

k
km
j

j j j
k

1 2 1 2 1 2 1 212 1 2

12
12

12

12 1 2

(8″)

Notice that, qualitatively, this expression is similar to eqs 3a and 3b,
which is understood: transformation of rotational wave function in
space due to its rotation should not depend on how this wave
function is constructed; it should transform just as the

corresponding angular momentum, which gives the physical
meaning of eq 8″.

II.3. Equations of Motion. Equations of motion for time
evolution of the expansion coefficients aj12j1j2

m12′ are obtained by
substituting eq 2, with Υj12j1j2

m12′ expressed by eq 8″, into the time-
dependent Schrödinger equation. Derivations are very similar to
those in the molecule + atom case, outlined in eqs 18−21 of our
earlier paper, ref 29. For the sake of brevity we will not repeat
them here and will only present the result

∑

∑

∂

∂
= − −

−

′

′ ″ ′ ′
′ ′ ′

″
′ ″ ′ ′

′
′ ′

″

″
″
′

a

t
a M R E E t

a W

i ( ) exp{i( ) }
j j j
m

j m j j
j j j
m

j m j j
j m j j

j j j j

m
j j j
m

m
m

12 1 2

12

12 12 1 2

12 1 2

12

12 12 1 2

12 12 1 2

1 2 1 2

12
12 1 2

12
12
12

(9)

We see that besides phase factors, time evolution of the expan-
sion coefficients is driven by two transitionmatrices. MatrixWm12″

m12′ is
responsible for transitions between different (energetically degen-
erate) projection states of the total angular momentum j12. It can be
expressed as

δ= Θ̇ + Θ − ″ Θ Φ̇″
′

″
′

″
′

′ ″W U V mi(sin cos )m
m

m
m

m
m

m m12 ,12
12

12
12

12
12

12 12

(10)

where for convenience we introduced two time-independent
matrices:

δ

δ

= + − ″ ″ −

− + − ″ ″ +

″
′

′ ″ −

′ ″ +

U j j m m

j j m m

1
2

[ ( 1) ( 1)

( 1) ( 1) ]

m
m

m m

m m

12 12 12 12 , 1

12 12 12 12 , 1

12
12

12 12

12 12

(11a)

δ

δ

= + − ″ ″ −

+ + − ″ ″ +

″
′

′ ″ −

′ ″ +

V j j m m

j j m m

1
2

[ ( 1) ( 1)

( 1) ( 1) ]

m
m

m m

m m

12 12 12 12 , 1

12 12 12 12 , 1

12
12

12 12

12 12

(11b)

Matrices Um12″
m12′ and Vm12″

m12′ have to be computed only once,
for every value of j12, but they do not depend on j1 or j2. They
arecomputed analytically and do not include the interaction
potential. Physical meaning of the last term in eq 9 is the
centrifugal coupling effect. Allowed transitions are Δm12′ = ±1.
Neglecting this term leads to CS approximation within MQCT
framework, with no transitions allowed between the m12′ states.
Here we do not follow this path and focus on the fully coupled
MQCT. However, eq 10 can be simplified in the case when the
initial state of the system is an eigenstate (rather than a wave
packet) and the interaction potential is cylindrically symmetric.
In this case the trajectory of relative molecule−molecule scat-
tering stays in one plane, which can be chosen as the equatorial
plane, Θ = π/2, without loss of generality. With this choice, as
collision progresses, the classical vector Q rotates in the
equatorial plane, which is described by time evolution of classical
variables R(t) and Φ(t), as one can see in Figure 1. Because
sinΘ = 1, cosΘ = 0, and Θ̇ = 0, eq 10 simplifies significantly,
giving

= Φ̇″
′

″
′W Vim

m
m
m

12
12

12
12

(12)

This formula shows clearly that although Vm12″
m12′ is time-

independent, the entire matrix Wm12″
m12′ evolves in time, according

to the angular speed Φ̇ of the vector Q (see below).

The Journal of Physical Chemistry A Article

DOI: 10.1021/acs.jpca.5b06812
J. Phys. Chem. A 2015, 119, 12329−12338

12332

http://dx.doi.org/10.1021/acs.jpca.5b06812


The second matrix in eq 9 is the potential coupling
matrix Mj12′ m12″ j1′j2′

j12m12′ j1j2 that should be computed numerically, using
the potential energy surface V(R,γ1,γ2,φ1′,φ2′), as

γ γ φ φ γ γ φ φ γ γ φ φ= ⟨Υ ′ ′ | ′ ′ |Υ ′ ′ ′
′ ′ ⟩

′ ″ ′ ′
′

″ ″

M R

V R

( )

( , , , ) ( , , , , ) ( , , , )

j m j j
j m j j

j j j
m

j j j
m

1 2 1 2 1 2 1 2 1 2 1 2

12 12 1 2

12 12 1 2

12 1 2
12

12 1 2
12

(13)

Notice that each matrix element is a function of molecule−
molecule separation R, which is the length of the vector Q ,
that itself evolves during the collision (see below). In practice,
a useful expression for matrix elements is obtained by expand-
ing the interaction potential over basis set of spherical
harmonics:39

∑ ∑

θ θ φ φ

π
θ φ θ φ

′ ′

= + ⟨ − | ⟩ ′ ′−

V R

l
A R l ml m l Y Y

( , , , , )

2 1
4

( ) 0 ( , ) ( , )
ll l

ll l
m

l
m

l
m

1 2 1 2

1 2 1 1 2 2
1 2

1 2 1 2

(14)

This is a formal mathematical expansion of the (real-valued)
potential energy function. Here, for two chosen values of
l1 and l2 the value of l varies in the range |l1 − l2| ≤ l ≤ l1 + l2.
The basis set size depends on physical properties of the system
and is a convergence parameter (e.g., 0 ≤ l1 ≤ l1

max and
0 ≤ l2 ≤ l2

max). The value of m varies in the range min(l1,l2) ≤
m ≤ min(l1,l2). However, with eq 1, the sum over m in
this expression can be eliminated. Substitution of the result into
eq 13 gives

∑
π

θ θ φ φ θ θ φ φ θ θ φ φ

= +

× ⟨Υ ′ ′ |Υ ′ ′ |Υ ′ ′ ⟩

′ ″ ′ ′
′

′
′ ′ ′
″

M R
l

A R( )
2 1
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j m j j
j m j j

ll l
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j j j
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ll l j j j
m

1 2 1 2
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12 12 1 2

1 2
1 2

12 1 2
12

1 2 12 1 2

12

(15)

In fact, even from here one may see that matrix elements are
nonzero only if m12′ = m12″ . This property can be derived in more
rigorous way, by using eq 1 in eq 15 three times (for each of
the four-dimensional functions Υ), and splitting the four-
dimensional integral onto two two-dimensional integrals, as
follows:

∑

∑
π

θ φ θ φ θ φ θ φ θ φ θ φ
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1
1

1 1
1

2
2

2 2
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(16)

This formula allows seeing that matrix elements are nonzero not
only ifm1′ =m1″ +m andm2′ =m2″−m (from the integrals) but also
only if m12′ = m1′ + m2′ and m12″ = m1″ + m2″ (from the Clebsch−
Gordan coefficients). All these conditions can be satisfied
simultaneously only if m12′ = m12″ . So, the matrix M is block-
diagonal inm12′ , with each block describing transitions from j12j1j2
to j12′ j1′j2′, within the same value ofm12′ . For convenience, the index
m12′ can be omitted from the list of indexes for this matrix,
namely, we can writeMj12′ j1′j2′

j12j1j2, meaning that such blocks should be
computed for all values of m12′ .
Finally, using the two simplifications discussed above, we can

rewrite eq 9 in the following convenient form, where transitions
between the levels j12j1j2 (within m12′ ) are driven by matrix M,

whereas transitions between the statesm12′ (within j12) are driven
by matrix V:

∑

∑

∂

∂
= − −

− Φ̇

′
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′
′ ′ ′ ′ ′

″

″
″
′
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j j j
m

j j j
j j j
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j j j j
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m
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12 1 2
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1 2 1 2

12
12 1 2

12
12
12

(17)

This is a system of coupled differential equations, of a form
quite typical to quantummechanics (except, maybe, the presence
of time-dependent classical variables R and Φ), which can
propagated in time using any suitable method, such as general
fourth-order Runge−Kutta, or more specialized numerical
methods.
The equations of motion for classical degrees of freedom,

coordinates R(t) andΦ(t) of the vectorQ , are derived using the
Ehrenfest theorem as explained in our earlier work.29 Inter-
estingly, for the molecule + molecule system studied here, the
classical equations come out identical to those we derived earlier
for the molecule + atom system.29,31 This makes sense, simply
because the variables R andΦ are exactly the same. Thus, we will
not repeat the derivations here, and will only summarize the final
equations, for the sake of completeness:

μ
̇ =R

PR

(18)

μ
Φ̇ = ΦP

R2
(19)
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∑ ∑̇ = − *
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Here μ is a molecule−molecule reduced mass. Equation 21
includes a commutator of matricesMj12j1j2

j12′ j1′j2′m12″ . These equations can
be propagated in time and space numerically, together with
equations for quantum degrees of freedom, eq 17. In practice, we
compute matrix elements on a predefined grid of points Ri along
the coordinate R, just as in the full-quantum approach. During
the propagation, when the MQCT trajectory comes to the
vicinity of a grid point, we simply spline those precomputed
matrix elements using 1D-spline of several points closest to this
point. Such a procedure is very efficient and accurate using
quadratic or qubic spline, carries little overhead, and is similar to
splining the PES (defined on a grid) during propagation of purely
classical trajectories.

II.4. Sampling of the Initial Conditions.Our procedure for
computing state-to-state cross sections not only includes
sampling of the initial conditions for classical degrees of freedom
but also incorporates a sum over the final and an average over the
initial degenerate states, just as in the full-quantum calculations.
Namely, for a state-to-state transition of interest j1

inij2
ini → j1

finj2
fin a

set of (2j1
ini + 1)(2j2

ini + 1) independent calculations has to be
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carried out, with all possible values of the initial j12
ini and m12′ini

needed to construct the average:

∑ ∑
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+ +
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2
ini

1
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2
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(22)

For each of these calculations we sample randomly and uniformly
the value of J that corresponds to the total angular momentum in
the problem, through the range 0≤ J≤ Jmax. The value of Jmax is a
convergence parameter, just as in the full-quantum calculations.
For a given pair of j12

ini and Jwe sample the value of l randomly and
uniformly through the range |J − j12

ini|≤ l ≤ J + j12
ini. It corresponds

to the orbital angular momentum in the molecule−molecule
system, l = J− j12, and is used to define classical initial conditions
as follows:

= +ΦP ( 1) (23)

μ= − ΦP E P R2 /R
2 2

(24)

where E is the kinetic energy of collision (not the total energy)
and R is the initial molecule−molecule separation (about
25 Bohr). The initial value of Φ is arbitrary, and we use Φ = 0.
Note that although l is closely related to the classical collision
impact parameter, we do not sample or use the impact parameter
directly. The goal is keep MQCT as close as possible to the
quantum formalism.
With the initial conditions of eqs 23 and 24, the classical-like

eqs 18−21 and a system of quantum-like coupled eqs 17 are
propagated through the collision event, until the point when the
molecule−molecule separation exceeds the initial limiting value.
The final values of probability amplitudes are used to compute
transition probability (summed over the degenerate final states):
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(25)

Here index i labels independent trajectories in a batch of N
trajectories. This number is also a convergence parameter (here,
around 200 per one initial state, per energy point). Average of
probability over the batch gives the cross section:

∑σ
π

= +′ ′→ →
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J P(2 1)j m j j j j

i

i
j m j j j j
imax
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1
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2
ini

1
fin

2
fin

(26)

which has to be substituted into eq 22. Note that sampling over
J and l is done in one step (two-dimensional sampling), because
there is no requirement that every term in eq 26 is converged.
We only require that the entire sum in eq 26 is converged (i.e.,
only the average cross section, rather than each individual
probability). Thus, the procedure is very efficient and only a
moderate number of MQCT trajectories is needed.

III. NUMERICAL RESULTS
Theory developed in the previous section was applied to N2 +H2
system.We had no goal of describing this process as accurately as

possible, or as completely as possible, but rather to test the
equations we derived the computational methodology we
developed and the codes we wrote so far. Thus, we only
considered several exemplary state-to-state transition processes
and have taken into consideration only a few terms in the
potential energy expansion, just enough for these transitions to
occur in the N2 + H2 collisions. The following terms of the
potential energy expansion in eq 14 were included: A000, A202,
A022, and A224. The potential energy surface of ref 40 was used.
In addition to MQCT calculations we also carried out the full-

quantum CC-calculations using MOLSCAT41 and used those as
a benchmark. MOLSCAT calculations were much more
demanding computationally, compared to MQCT calculations.
In fact, for the results presented below, the range of collision
energies and the size of rotational basis set were dictated by
numerical cost of the full-quantum CC-calculations, not by
MQCT. In some cases we intentionally have taken small basis set,
to make the MOLSCAT calculations less costly. But, in all cases
the MQCT and the MOLSCAT calculations were carried out
with exactly the same rotational basis set and the same values of
Jmax, to make comparison straightforward and meaningful.
The first test case was rotational excitation of N2(j1 = 0) by

H2(j2 = 2), with no rotational transitions allowed in H2.
Excitations of N2 into j1 = 2, 4, and 6 were analyzed. Thus,
molecular basis set for H2 included only one rotational state,
j2 = 2, whereas the basis set for N2 included 9 rotational states, up
to j1 = 16. Only even values of j1 were included, because
homonuclear N2 is symmetric, so that only transitions with even
values of Δj are allowed (notice that these quantum prop-
erties can be rigorously described by MQCT). As explained in
section II.4, our approach requires running (2j1

ini + 1)(2j2
ini + 1)

independent calculations. Accordingly, we carried out five
calculations with initial states −2 ≤ m12′ ≤ 2 of j12 = 2. At low
collision energies we used Jmax = 15, whereas at high collision
energies we used Jmax = 120, in both full-quantum and MQCT
calculations. Results are presented in Figure 1 for the range
of collisional energies from the excitation threshold, which is
11.92 cm−1 for transition into j1 = 2, up to the energy 4000 cm

−1.
The full-quantum benchmark data illustrate that energy

dependencies of state-to-state cross sections are quite involved
(Figure 2). For all three transitions the value of cross section rises

Figure 2. State-to-state cross sections for excitation of N2(j = 0) by
collisions with H2(j = 2). Initial and final rotational states of collision
partners are labeled as (j1, j2), where the first index belongs to N2
whereas the second index belongs to H2. Full-quantum benchmark data
are shown by pink symbols, and results of MQCT are shown by green
lines. See the text for a detailed description of this computational
experiment.
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quickly at the corresponding threshold. Scattering resonances are
observed in a short energy range just above the threshold, after
which the dependence is smooth, but not necessarily monotonic.
Thus, the dependencies for excitation of j1 = 4 and 6 exhibit
pronounced maxima near collision energies of 400 and 800 cm−1,
respectively. For excitation of j1 = 2 the maximum is less
important and is hidden by resonances at low energies, near
20 cm−1. At higher energies cross sections for all three transitions
tend to decrease. On top of these major trends, we also see some
small-amplitude oscillations of cross section dependencies, most
noticeable in the case of excitation into j1 = 2 (Figure 2). Besides
resonances, MQCT captures all these features. Even the
excitation thresholds, and even the small oscillations of cross
sections, are accurately reproduced.
At higher collision energies the results ofMQCT become nearly

identical to the full-quantum results (Figure 2). This, perhaps, is
the most practically important aspect of MQCT, because the full-
quantum calculations become prohibitively difficult at higher
energies, whereas MQCT calculations remain affordable. At lower
energies the treatment of resonances is probably possible within
MQCT,36 but this topic is beyond the scope of the present paper
and is less important in practice, because the full-quantum calcula-
tions are quite affordable in the low-energy regime. Accurate de-
scription of the excitation thresholds withinMQCT is possible due
to the symmetrized approach,22 also known as the average velocity
approach, which we described in detail in our earlier paper.28

The second test case we chosen was a process of quenching of
rotationally excited H2 (j2 = 2) into its ground state j2 = 0 by
collision with ground state N2 (j1 = 0). In these calculations
the basis set included j1 = 0 and 2 for N2, and j2 = 0 and 2
for H2, which is just two states for each collision partner. Again,
(2j1

ini + 1)(2j2
ini + 1) of independent calculations were carried out,

which is 5 for j12 = 2, with −2 ≤ m12′ ≤ 2. Note that this process
does not have a threshold, because the internal rotational energy
is released. The amount of energy released by H2 is quite
significant, close to 360 cm−1, consistent with Δj2 = −2. The
range of collision energies considered here was also broad, from
1 up to 4000 cm−1. MQCT results are presented in Figure 3,
together with the full-quantum benchmark data obtained with
MOLSCAT using the same basis set.
Figure 3 illustrates that, despite the fact that energy

dependence of inelastic cross section is not simple for this

state-to-state transition, the agreement between MQCT and the
benchmark data is very good. Note that although there is no
threshold for the process, the value of cross section changes by
more than an order of magnitude through the range of
considered energies and exhibits a pronounced minimum near
collision energy of 60 cm−1. In the low-energy regime the value of
cross section growth resembles the asymptotic Wigner law.42

Here MQCT is less accurate, which is expected from a method
like MQCT (that incorporates a classical component) in the
quantum scattering regime (where the asymptotic Wigner law
behavior is typical). Several broad resonances in the energy range
below 20 cm−1 (Figure 3) are reproduced by MQCT only on
average. At higher energies the value of cross section also grows.
Importantly, at collision energies above 50 cm−1 the results of
MQCT are nearly identical to the full-quantum results.
To derive the scaling law of MQCT for the molecule +

molecule case, we plotted in Figure 4 the computational cost of

our calculations presented in Figure 2. The first frame, Figure 4a
shows CPU time as a function of the number of channels. Here
the notion of a “channel” should be discussed, because it is
different from the channel in the molecule + atom case. Thus,
in the molecule + atom case the channels are nondegenerate
energy levels. Those are labeled by j in the case of the diatomic

Figure 3. State-to-state cross sections for quenching of H2(j = 2) by
collisions with N2(j = 0). Initial and final rotational states of collision
partners are labeled as (j1, j2), where the first index belongs to N2
whereas the second index belongs to H2. Full-quantum benchmark data
are shown by red symbols, and results of MQCT are shown by the green
line. See the text for a detailed description of this computational
experiment.

Figure 4. Computational cost of MQCT calculations presented in
Figure 1 for N2 + H2. Two frames correspond to two different variables:
(a) as a function of the number of channels included in calculations;
(b) as a function of collision energy.
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molecule (or by jkakc in the case of a general asymmetric top) and
include 2j + 1 degenerate states labeled by m′, within each
channel. In contrast, in the molecule + molecule case considered
here the nondegenerate channels are labeled by the pairs of
indexes (j1, j2). Such “channels” include (2j1 + 1)(2j2 + 1)
degenerate states labeled by j12, and for each value of j12 they
include the 2j12 + 1 of degenerate projection states labeled bym12′ .
So, the channels in the molecule + molecule case include more
degenerate states than the channels in the molecule + atom case.
Still, we prefer to analyze numerical performance as a function of
channels, rather than a function of states, because this can be
compared directly to the scaling law of the full-quantum
calculations that also have channels but involve no projection
states labeled by m′.
For example, in the previous work we found that the cost of

fully converged MQCT for the molecule + atom case scales as
n2.5, where n is the number of channels. In this work we see from
Figure 4a that the cost scales as n3.5, which makes sense. The
additional factor of n comes from the presence of additional
degenerate states labeled by j12. Note that this scaling law
represents the overall cost of MQCT calculations, converged
with respect to Jmax at each collision energy. In contrast, when the
scaling law of the full quantum calculations is discussed, it is
usually reported for an idealized test, when the number of
channels is changed, but the value of Jmax and the number of
partial scattering waves needed for convergence are kept
constant. But in practice, when the collision energy is raised,
the value of Jmax needed for convergence also grows, and the cost
of calculations increases dramatically, particularly for heavy
collision partners. Although the scaling law of the full-quantum
calculations with respect to the number of channels is only on the
order of n4 in an idealized situation, in reality, when the
calculations are carried out for a broad energy range, the overall
cost reaches n6 to n7. Importantly, in MQCT such “overhead”
does not occur (because the scattering process is treated
classically) and the cost remains low, n3.5, as shown in Figure 4a.
In this respect we want to mention that the data presented

in Figure 2 were reported only for collision energies below
4000 cm−1 due to significant computational cost of the
MOLSCAT calculations at higher energies. Practical full-
quantum calculations at higher collision energies would require
the parallel version of MOLSCAT, which we did not use.
However, MQCT calculations were quite efficient at even higher
energies. For example, in Figure 4b we presented the cost
of MQCT calculations as a function of collision energy up to
10000 cm−1.

IV. CONCLUSIONS

We worked out the mixed quantum classical theory, MQCT, for
inelastic collision of two molecules, where the internal
(rotational) motion of the molecules is treated with quantum
mechanics, whereas the molecule−molecule scattering is
described by classical trajectories. The resultant MQCT
formalism includes a system of coupled equations for quantum
probability amplitudes, and the mean-field classical equations of
motion. The procedure for sampling the initial conditions and
computing cross sections has also been devised. Derivations
presented here were carried out for two diatomic molecules
treated as rigid rotors, but extension onto two polyatomic
molecules, and inclusion of the vibrational states into the basis
set, are both relatively straightforward. To our best knowledge
such theory has never been formulated in the past.

We also carried out some numerical tests of this theory, using a
real system N2 + H2 with accurate potential energy surface, for a
broad range of collision energies and several most important
state-to-state transitions. Besides scattering resonances at low
collision energies (which we did not try to describe here) the
full-quantum results were reproduced by MQCT in detail,
including the excitation thresholds, the maxima of cross sections,
some small oscillations of energy dependencies, and the
asymptotic behavior. Most importantly, at higher energies the
results of MQCT become nearly identical to the full quantum
results. It looks like in this energy range MQCT is a good
alternative to the full-quantum calculations, because the latter
become computationally expensive. The scaling law (computa-
tional cost vs system complexity) was also determined for
MQCT and was found to be much more favorable compared to
that of the full-quantum calculations.
One way of using MQCT is by blending its results with results

of the full-quantum CC calculations. Namely, to compute rate
coefficients the values of cross sections are typically needed in
a broad range of collision energies. One could start by running
CC calculations at lower energies, because they are quite
affordable there, and because scattering resonances may occur in
this regime. At higher energies, where CC calculations become
too demanding, one may start MQCT and check if it is in good
agreement with CC method. If yes, one could stop CC
calculations and continue with MQCT only, because it is more
affordable and is sufficiently accurate at higher energies. The
standard practice nowadays is to switch, at higher energies, from
the exact CC to an approximate CS method. However, we
showed in our recent work on several systems and in different
collision regimes33,35 that the fully coupled MQCT is more
accurate than CS approximation, where centrifugal coupling is
neglected and transitions between different m-states do not
occur. So, switching to MQCT, instead of CS, may be more
advantageous.
Several topics related to MQCT still require further work.

Although less important from practical perspective, the question
of scattering resonances is important from theoretical point of
view. Earlier work by others indicates that it might be possible to
use phase information to describe resonances within MQCT
framework. Another question is collision of identical particles,
such as N2 + N2, or H2 + H2. Present theory is only valid for
nonidentical molecules. In the case of two identical molecules the
total wave function should be properly symmetrized, and this
seems to be feasible for MQCT. Also, it is an interesting question
whether MQCT is capable of describing accurately the so-called
quasi-resonant energy transfer between two molecules. We plan
exploring some of these issues in the near future.
Finally, from themethod development perspective, it would be

interesting to formulate MQCT using grid representation
(DVR) of the rotational wave function, instead of the basis set
expansion (FBR) used here. Such treatment of rotational
wave packets may be more efficient for molecules and processes
where large number of rotational states is excited, leading to large
state-to-state transition matrices that are difficult to handle. One
important applications of such methodology would be in
inelastic scattering by polyatomic molecules, where the spectra
of rotational states are very dense.
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