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We applied the semiclassical initial value representation method to calculate energies, lifetimes, and
wave functions of scattering resonances in a two-dimensional potential for O+O2 collision. Such
scattering states represent the metastable O3

* species and play a central role in the process of ozone
formation. Autocorrelation functions for scattering states were computed and then analyzed using
the Prony method, which permits one to extract accurate energies and widths of the resonances. We
found that the results of the semiclassical wave packet propagation agree well with fully quantum
results. The focus was on the 16O16O18O isotopomer and the anomalous isotope effect associated
with formation of this molecule, either through the 16O16O+ 18O or the 16O+ 16O18O channels. An
interesting correlation between the local vibration mode character of the metastable states and their
lifetimes was observed and explained. New insight is obtained into the mechanism by which the
long-lived resonances in the delta zero-point energy part of spectrum produce the anomalously large
isotope effect. © 2007 American Institute of Physics. �DOI: 10.1063/1.2778432�

I. INTRODUCTION

Ozone �O3� is formed in the stratosphere as a product of
the following recombination reaction:

O + O2 + M ⇒ O3 + M, �1�

where M can be any atmospheric atom or molecule.1 One
possible mechanism for this reaction is through energy trans-
fer �Lindemann�,2–4

O + O2 ↔ O3
*, �2�

O3
* + M → O3 + M. �3�

This mechanism assumes formation of long-lived metastable
complexes O3

* that can decay or be quenched into stable O3

molecules by collisions with M.
Oxygen has three stable isotopes: 16O, 17O, and 18O.

Although the lightest isotope 16O is dominant in the atmo-
sphere, the stratospheric ozone shows anomalously large �up
to 40%� enrichments in the heavy isotopes of oxygen relative
to the oxygen from which it is formed.5–7 It is also well
established that the rate of the ozone forming reaction is very
sensitive to the isotopic composition.8 For example, if we
consider an asymmetric isotopomer of ozone, 16O16O18O, it
is produced mainly by two “attachment” reactions,

16O + 16O18O → 16O16O18O ← 16O16O + 18O. �4�

In the experiment the ratio of the third order reaction rate
coefficients for these two processes, R=�1616+18/�16+1618,
shows no dependence on the mass or chemical nature of the
third body M,1 but it exhibits a very large isotope effect:8

Rexp�0.63.

Despite a significant amount of experimental5–10 and
theoretical11–29 work devoted to ozone formation, a complete
theoretical picture of this phenomenon is still missing. Mar-
cus and co-workers12,14 were the first to reproduce experi-
mental data within the framework of the empirically adjusted
RRKM approach, leaving a number of crucial dynamics
questions open. The first reactive scattering calculations car-
ried out by Babikov et al.18–20 demonstrated that this phe-
nomenon has an essentially quantum mechanical origin. It
was shown that the anomalous isotope effect in the ozone
forming reactions can be explained by the presence of a large
number of scattering resonances in a narrow energy range
between the zero-point energies �ZPEs� of two entrance
channels in the reaction �4�. Schinke et al.24,25 found an in-
genious way to mimic this quantum �ZPE effect within the
framework of classical trajectory simulations by artificially
“lifting” the asymptotic value of interaction potential in one
of the channels. The quantum scattering studies of state-to-
state transitions during the stabilization step �3� were re-
ported by Charlo and Clary16 and by Xie and Bowman28 and
have shown that the low-lying metastable states are indeed
important for the isotope dependence of the ozone formation
rates. However, due to the extreme complexity of fully quan-
tum mechanical calculations, all the quantum scattering stud-
ies reported to date16,18–20,28 have been restricted to various
approximations and have not achieved a complete solution of
the problem.

One alternative to the fully quantum calculations is the
time-dependent semiclassical wave packet method,30–33 also
known as the Herman-Kluk propagator or the initial value
representation �IVR� method.34–36 It is well known that this
approach reproduces the quantum ZPE36,37 and can be used
to describe bound states in strongly anharmonic
potentials.38,39 Grossmann used this method to calculate life-
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times and energies of several metastable states for collinear
H3

*→H+H2 decay in a two-dimensional �2D� potential en-
ergy surface �PES�.39 Note that since the PES for H3 is re-
pulsive and the metastable states are short lived
��=0.02–0.08 ps�, the propagation time in his calculations
did not exceed 0.13 ps.

The ozone forming reaction is much more complicated
to treat because the ozone PES has a deep attractive well
�D�1.13 eV� and accommodates a number of scattering
resonances with lifetimes on order of �=100 ps.18 We found
that in order to accurately characterize such long-lived reso-
nances �using the Prony algorithm, see Sec. III below� propa-
gation of the initial wave packet for at least �4 ps was nec-
essary, but the long time propagation is known to be a tough
task for the IVR due to emergence of chaotic trajectories.36,38

In our previous paper29 we successfully applied the IVR ap-
proach to characterize long-lived resonances in a one-
dimensional potential representing the minimum energy path
for reaction �2�. Here we build upon that work and extend
our methodology onto a 2D case which allows us to study
simultaneously two isotopic compositions of the reactants in
reaction �4� and to explore the associated isotope effect. It
should be emphasized that the �ZPE effect is essentially a
multichannel phenomenon and considering a 2D PES with
two entrance channels is necessary and sufficient to observe
it. Indeed, on a 2D PES introduced in the next section one
entrance channel correlates with the left side of reaction �4�,
where the ZPE is determined by the mass of heavier di-
atomic reactant 16O18O, while the other channel correlates
with right side of the reaction �4�, where the ZPE is deter-
mined by the mass of the lighter diatomic reactant 16O16O.
This gives us the �ZPE=ZPE1616−ZPE1618.

This paper is organized as follows: Section II describes
the model PES used in this study, outlines the semiclassical
IVR method and the procedure for calculating the autocorre-
lation functions; analysis of the autocorrelation functions and
properties of the scattering resonances are presented in
Sec. III; kinetics of the recombination reactions and the iso-
tope effect are discussed in Sec. IV; conclusions are given in
Sec. V.

II. PES AND THE PROPAGATION METHOD

The main focus of this paper is on the application of the
semiclassical methodology to the characterization of scatter-
ing resonances and description of the �ZPE effect. To sim-
plify this task as much as possible we have chosen to sacri-
fice accuracy of the potential �to some extent� and used an
approximate 2D PES which describes semiquantitatively all
major features of the ozone molecule. The emphasis is on an
accurate description of the �ZPE value and of the PES be-
havior in the channel regions because, as will be seen in the
next section, those regions are most important for description
of the metastable ozone states. Our PES is analytical, based
on the Morse oscillator functions, and also includes several
fine corrections,

V�r1,r2� = − D0 + D�1 − e−a�r2��r1−re�r2���2

+ D�1 − e−a�r1��r2−re�r1���2 + VvdW�r1�

+ VvdW�r2� + Vinf�r1,r2� . �5�

The minimum energy point of our PES is at r1=r2=re

=2.394 a.u. which is very close to experimental value of
2.405 a.u. for the equilibrium bond lengths in O3.40 Vibra-
tional frequencies for the symmetric and antisymmetric
stretch normal modes calculated using our PES for 16O3 are
equal to 1100.4 and 1000.2 cm−1, respectively, and these
numbers are close to two corresponding fundamental vibra-
tion frequencies in ozone: 1101.9 and 1043.9 cm−1.22 �Using
masses of the 16O16O18O isotopomer the two calculated fre-
quencies are 1083.6 and 987.1 cm−1, respectively.� As one of
the bonds is stretched and the shape of O3 triatomic is dis-
torted towards the O+O2 configuration, the PES curvature
and the bond length should change towards those of the di-
atomic O2 product. This effect is incorporated into Eq. �5� by
letting the Morse parameters re and a be coordinate-
dependent quantities re�r� and a�r� in the form of shifted
Gaussian functions. In the asymptotic channel region of our
PES the equilibrium bond length obtained for O2 product is
2.26 a.u. which is close to experimental value 2.28 a.u.41 The
asymptotic ZPE’s obtained in the channels are 863.4 cm−1

for 16O16O product and 839.4 cm−1 for the 16O18O product,
which gives us the correct �ZPE=24.0 cm−1 between the
two channels.18 Additional small corrections terms VvdW�r�
are added to each channel in order to better reproduce the
“tail” part of the ozone potential.18 The last term Vinf�r1 ,r2�
in the form of a hyperbolic tangent function is used to fit the
asymptotic value of the PES in the region of three body
breakup �not considered in this paper�. Experimental energy
of 1.132±0.017 eV �Ref. 42� for dissociation O3→O+O2 is
reproduced by the appropriate choice of parameters D0 and
D. Figure 1 gives a broad range view of our PES and a
magnified view of its well region. Note that the general
shape of this PES is typical for many barrierless recombina-
tion reactions.43–45

Our two-dimensional Hamiltonian is

H =
p1

2

2�1
+

p2
2

2�2
− cos �e

p1p2

�0
+ V�r1,r2� , �6�

where �e=2.032 is the bending angle frozen at its equilib-
rium value.22 This approximation is justified by the fact that
this angle changes only insignificantly along the minimum
energy path for dissociation of O3. The values of �1 and �2

represent the effective masses of diatomic products in two
channels, while �0 is equal to the mass of the central atom.

The wave function is also two dimensional: ��r1 ,r2�
=��r�. In the IVR method,31,32 the initial wave function
��r ,0� is expanded in terms of an overcomplete set of N
Gaussian functions,
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���r,ri,pi� � �2�

�
	1/2

exp
− ��r − ri�2 + ipi · �r − ri�� .

�7�

These basis functions are placed randomly at various initial
points �ri ,pi� in phase space and the time evolution of the
wave function ��r , t� is approximated by an integral over the
initial phase space,

��r,t� =� dridpi

�2��2 ���r,ri,pi����r,0��r

	 ���r,rt,pt�C�rt,pt�eiS�rt,pt�. �8�

Each of N trajectories is propagated independently in the
usual, classical way from its initial point �ri ,pi� to the final
point �rt ,pt� at time t,

ṙt =
�H

�p
, ṗt = −

�H

�r
. �9�

All quantum mechanical effects are incorporated in Eq. �8�
by calculating the classical action S�rt ,pt� and the preexpo-
nential factor C�rt ,pt� for each trajectory,32

C�rt,pt� = �1

2
� �pt

�pi
+

�rt

�ri
− 2i�

�rt

�pi
+

i

2�

�pt

�ri
	�1/2

. �10�

For simplicity, the initial wave packet ��r ,0� can be chosen
as a Gaussian function characterized by the position r0, mo-
mentum p0, and the width parameter 
,

��r,0� = �
�r,r0,p0�

� �2


�
	1/2

exp
− 
�r − r0�2 + ip0 · �r − r0�� . �11�

In this case the overlap integral in Eq. �8� can be calculated
analytically and the multidimensional integration in Eq. �8�
can be carried out using a Monte Carlo scheme based on the
Box-Müller algorithm.32 Then, the final expression for the
wave function is

��r,t� =
1

N

2�
 + ��
�
�

�
n=1

N

���r,rt,pt�

	 C�rt,pt�ei�S�rt,pt�+��ri,pi��, �12�

where we introduced

��ri,pi� �
�ri − r0� · �
pi + �p0�


 + �
. �13�

For analysis of the time-dependent wave packet we have
to compute the autocorrelation function or the survival prob-
ability,

P�t� = ��r,0����r,t��r. �14�

Using Eqs. �12� and �13� and calculating analytically the
overlap integral in Eq. �14� we obtain

P�t� =
4

N
�
n=1

N

C�rt,pt�e−A�rt,pt�+iB�rt,pt�, �15�

where we introduced

A�rt,pt� �

�

�
 + ��
�rt − r0�2 +

1

4�
 + ��
�pt − p0�2, �16�

B�rt,pt� � S�rt,pt� + ��ri,pi� − ��rt,pt� . �17�

Note that P�t� in Eq. �15� is obtained as a sum over indepen-
dent classical trajectories propagated numerically, which al-
lows us to employ an efficient parallel algorithm for calcu-
lations of P�t� using rather simple analytical expressions for
A�rt ,pt�, B�rt ,pt�, and C�rt ,pt�.

We found that the bound vibrational states localized in
the well are very easy to characterize using the IVR propa-
gation, because the spectrum is relatively sparse and also
because many bound states can be captured simultaneously
by a single Gaussian packet placed basically anywhere in the
well. However, in order to give an accurate description of
energies and lifetimes of the metastable states in the �ZPE
region and above, the parameters �r0 ,p0� and 
 of the initial
wave packet should be carefully chosen. This is because the
spectrum of the scattering states is much denser, with many
overlapping resonances. We found that in this situation the
method works better if the initial wave packet covers only a
narrow energy range and overlaps as much as possible with
the wave function of one metastable state. Propagation of
several such packets is required in order to cover the entire
energy range of interest. We came out with the following
recipe: In a barrierless potential the best position for the ini-
tial wave packet is far in the entrance or exit channel. This is

FIG. 1. Two views of the potential energy surface V�r1 ,r2� used here to
study recombination. The well depth is 1.13 eV. Energies of the contour
lines are given in eV. Shaded area shows configuration space below the
classical dissociation limit E=0. Circles represent the initial wave packets.
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illustrated in Fig. 1, where we placed six wave packets along
each channel with initial positions in the range 7�r0

�14 a.u. This choice may look somewhat surprising but, as
will be demonstrated below, it is justified by the shape of the
wave functions for the scattering states. The width of the
initial wave packet 
 should be comparable to the expected
distance between the nodes of the wave functions in order to
minimize cancellation of the overlap. Here we used 
=50.
Finally, we found that the initial momentum should be set to
zero. A nonzero momentum only increases quantum energy
of the packet, broadens the energy window and shifts it up,
away from the �ZPE part of spectrum. Thus, we used p0

=0 in Eqs. �11�–�17�.
The major difficulty of the semiclassical IVR approach

is associated with appearance of chaotic �unstable�
trajectories.36,38 For such trajectories the prefactor C�rt ,pt�
becomes exponentially large, which leads to poor conver-
gence of the method with respect to N and reduces accuracy
of results. This is particularly the case for multidimensional
potentials and at long propagation times, both specific to our
system. Apparently, the problem was not that severe neither
in the first study by Grossmann,39 due to strongly repulsive
PES and short propagation time, nor in our previous one-
dimensional study,29 where it could be overcome by increas-
ing the number of trajectories, N. In this work, however,
even with N=107 the propagation time was limited by the
chaotic behavior to only t�0.3–0.4 ps, which is insufficient
for spectral analysis. This behavior is seen very clearly in
Fig. 2�a�. To overcome this problem it was suggested by
Kay36 to monitor the values of C�rt ,pt� and remove any tra-
jectory if its prefactor exceeds a chosen �large� cutoff value.
Following this procedure we lost up to 15% of trajectories,
which is highly undesirable at long propagation times when
the sampling is already deteriorated by the wave packet
spreading. Moreover, we observed that the long time behav-
ior of P�t� is rather sensitive to the choice of the cutoff value
for the �C�rt ,pt��. We adopted a better approach. Since our
primary purpose is to calculate the autocorrelation function
P�t� using Eq. �15� we should remove chaotic trajectories
based only on the value of the product of the prefactor and
the exponential factor for overlapping Gaussian functions:
�C�rt ,pt��e−A�rt,pt�. This new cutoff procedure allowed us to
extend the propagation time by an order of magnitude keep-
ing the amount of deleted trajectories at only 0.5%. The most
important is that when the value of our cutoff parameter
�C�rt ,pt��e−A�rt,pt� is varied in the working range �between
200.0 and 300.0� it has a negligible effect on the calculated
autocorrelation function P�t�. Figure 2�a� gives an example
of the autocorrelation function calculated using our cutoff
procedure for a typical initial wave packet.

For comparison we propagated the same wave packet
using the fully quantum Chebyshev method46 and found that
the quantum and semiclassical autocorrelation functions
agree well during the initial 0.6 ps �see Fig. 2�b��. Differ-
ences between the two methods at t0.6 ps are due to errors
of the quantum propagation, which requires a significant ex-
tension of the grid �due to fast motion of the wave packet
into the channels� and becomes computationally impractical
at �1 ps. Note that the semiclassical method allows us to

continue propagation to about 3.0–4.0 ps �see Fig. 2�a��
without an increase in the computational cost. In terms of the
CPU time, the semiclassical IVR with N=106 was a factor of
25 faster compared to the quantum method. Another impor-
tant feature of the IVR is its intrinsic massive parallelization.
The N trajectories are totally independent and can be distrib-
uted among different processors and propagated in parallel
without any message passing which gives a tremendous ad-
vantage in terms of the wall clock time. For example, we run
our calculations using 1024 processors of the Seaborg ma-
chine at NERSC and achieved acceleration by another factor
of 103 compared to one-processor quantum propagation.

III. ENERGIES, LIFETIMES, AND WAVE FUNCTIONS
OF THE METASTABLE STATES

Figure 3 shows several examples of the half spectrum

I�E� = ��
0

�

P�t�eiEtdt�2

�18�

calculated by numerical integration of the autocorrelation
function P�t� obtained from the IVR propagation, Eq. �15�.
As discussed in the previous section, the initial wave packets

FIG. 2. �Color online�: Autocorrelation functions obtained from propaga-
tions of a wave packet with initial coordinates r1=9.0, r2=2.28 a.u., and

=50: �a� Semiclassical results calculated with all trajectories �black
dashed� and with chaotic trajectories removed using new aproach �green
solid�. The standard propagation starts failing at about 0.3 ps and the advan-
tage of the cutoff method is clearly seen. �b� Semiclassical �green solid� vs
quantum �red dashed� results at shorter propagation times. See text for
details.
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are placed far into the channels of the PES where they over-
lap significantly with only one state. As a result, all the spec-
tra in Fig. 3 exhibit only one or two pronounced narrower
peaks and several less definite broader peaks �typically 10 or
more� with gradually decreasing amplitude. It is well known
that if the resonances are isolated, � j /2� �Ej −Ej−1�, the in-
tegration in Eq. �18� can be carried out analytically and the
half spectrum can be approximated by29

I�E� � �
j=1

L

�bj�4
1

�� j/2�2 + �E − Ej�2 , �19�

where bj are the probability amplitudes of different states in
the initial wave packet. Equation �19� indicates that the half
spectrum should exhibit a set of Lorentzian peaks showing
positions and widths of the metastable states. Figure 3 shows
very clearly that at energies above the �ZPE range all the
peaks are relatively broad regardless of into which channel
the initial wave packet was placed. �Note that Figs. 3�a� and
3�b� contain the results obtained by placing the initial wave

packets into the channels 16O16O and 16O18O, respectively.�
The situation within the �ZPE range is qualitatively differ-
ent. Here the wave packets placed into the 16O18O channel
still produce broader peaks, while the wave packets placed
into the 16O16O channel produce much narrower peaks, simi-
lar to those found at energies below the �ZPE where all the
quantum states are stable �bound�. Thus, the half spectra of
Fig. 3 indicate the existence of metastable states of two
types. All the metastable states above the �ZPE exhibit short
lifetimes; they significantly overlap each other and gradually
transform into a continuous spectrum. However, the reso-
nances within the �ZPE range can be either short or long
lived. Apparently, this depends on the channel.

Figure 3 also demonstrates that, due to the finite propa-
gation time and high density of states, the majority of peaks
do not represent isolated Lorentzians. Thus, it is not really
appropriate to try fitting the half spectrum I�E� with Eq. �19�.
The values of Ej and � j obtained this way will be very inac-
curate and highly sensitive to the propagation time. A much
better approach is to extract Ej and � j directly from P�t�
using the Prony method47 where the autocorrelation function,
calculated on a grid of time points, is fitted by

P�t� = �
j=1

L

bj exp
− i�Ej − i� j/2�t� , �20�

and the unknown coefficients bj, Ej, and � j are determined
using a nonlinear least-squares method. The value of L is
also unknown but can be determined by trial and error. The
restriction is L�M /2, where M is the number of points in
the autocorrelation function.47 The disadvantage of this
method is related to occurrence of false resonances and some
uncertainty in the error bars for each resonance. �Precision of
the fit of the entire spectrum is not really useful.�

We found it helpful to combine both methods and use
I�E� for preliminary analysis of the entire spectrum of the
wave packet, followed by the Prony analysis focused on nar-
row energy range. The results are given in Table I, where the
spectrum is divided onto two columns according to the chan-
nel where the initial wave packet was placed, either 16O16O
or 16O18O. Each autocorrelation function was analyzed sev-
eral times using different L and M and the precision of each
Ej and � j value was estimated as its deviation from an aver-
age value when L and M are varied. The precision of Ej

values for upper bound states �just below the �ZPE range� is
about 0.2 cm−1. For the scattering states in the �ZPE region
it is about 0.4 cm−1 and grows up to 1.0 cm−1 for the states
near the 900 cm−1 �see Table I�, which is very good. The
precision of widths for all broader resonances is about 10%
of � j values that is from 1.5 up to 30.0 cm−1, which is quite
satisfactory. This includes all the states in the 16O18O chan-
nel and the states in the 16O16O channel at energies above the
�ZPE. Within the �ZPE region in the 16O16O channel the
resonances are extremely narrow so that accurate determina-
tion of their widths was not straightforward. For these reso-
nances the Prony analysis showed that their widths belong to
the range � j �1.0 cm−1 �which corresponds to lifetimes
�50 ps� but the actual values were very unstable with re-
spect to L which resulted in the error bars of the same order

FIG. 3. Half spectra calculated from semiclassical propagation of the wave
packets placed initially in �a� 16O16O+ 18O and �b� 16O+ 16O18O channels.
Propagation time was t=2.42 ps, N=107, 
=�=50. Initial positions for
packets were r2

0=2.28 a.u., r1
0=7.0, 8.0, 9.0, 10.0, 12.0, and 14.0 a.u for

lines 1–6 in frame �a�; and r1
0=2.28 a.u., r2

0=7.0, 8.0, 9.0, 10.0, 12.0, and
14.0 a.u. for lines 1–6 in frame �b�.
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of magnitude, ±1.0 cm−1. Simply increasing the propagation
time did not help, which makes us to believe that this prob-
lem is due to the noise that appears in the semiclassical au-
tocorrelation functions at t0.8 ps, as can be seen in Fig. 2.
This noise is probably due to removal of chaotic trajectories.
The important role of such trajectories has been noted in
Refs. 36 and 38.

We found three ways to improve precision of � values
for such narrow resonances in the �ZPE region. First, we
increased the number of trajectories to N=108. Second, we
applied smoothing to the noisy autocorrelation function prior
to running its Prony analysis. Finally, we used eigenfunction
� j�r� obtained from the first IVR propagation �see below� as
a refined initial wave packet ��r ,0� for an additional second
propagation. This last method produces a noise-free very
simple looking autocorrelation function �with the dominant
amplitude bj close to one� and improves accuracy dramati-
cally. The disadvantages are inability to use the Box-Müller
algorithm for sampling and the increase of the computational
cost. Using this approach for narrow resonances in the �ZPE
region we obtained � j �0.06 cm−1 with the error bars given
in Table I. We observed better precision for those states that
are more isolated. For example, from Fig. 3�a� �curve 3� we
see that the state at E=840.4 cm−1 significantly overlaps the
state at E=835.6 cm−1, which leads to somewhat lower ac-

curacy. On the other hand, the state at E=861.4 cm−1 �curve
6 on the same figure� is completely isolated in the half spec-
trum, which results in a slightly better precision for its value
of �.

The data given in Table I for widths of the scattering
resonances support our observation of the unusual relation-
ship between the lifetimes and the channels. Further insight
is obtained from analysis of their wave functions.

When energies Ej are known, the wave functions of the
metastable states can be found from the Fourier transform of
the propagated wave packets,

� j�r� � �
0

�

��r,t�eiEjtdt . �21�

Typical examples are given in Figs. 4 and 5. Figure 4
shows the wave functions for two very narrow resonances in
the �ZPE range. Imaginary parts of these wave functions are
very small, which is consistent with small values of the cor-
responding � j’s given in Table I. The striking feature of these
states is their almost perfect localization along the 16O16O
channel with maximum probability points found far in the
channel at r1�9.0 and 11.0 a.u., respectively. Note that at
energies within the �ZPE range this channel is still closed
for decay of the metastable O3

* states and, although such

TABLE I. Energies and widths of bound and metastable states of 16O16O18O in the vicinity of the �ZPE energy
range using 2D potential from Eq. �1�. These data were obtained via Prony analysis of autocorrelation functions
calculated using semiclassical propagation of wave packets shown in Fig. 1.

Closed channel, 16O16O Open Channel, 16O18O

E�cm−1� ��cm−1� E�cm−1� ��cm−1�

Metastable states
above the ZPE
of 16O16O

¯ ¯

899.3 325.0
894.5 101.0
891.3a 58.0 891.2a 55.0

885.6 135.0
881.6 42.0
875.1 27.0

872.7 100.0
865.5 16.0

865.4 66.0

Metastable states
within the
�ZPE region

861.4 0.06±0.03
861.4 40.0

858.2 0.06±0.04
857.4 36.0

850.9 0.06±0.04
845.3 26.5
841.2 15.0

840.4 0.06±0.05

Bound states
below the ZPE
of 16O18O

837.2
835.6

825.8
817.0

807.3
788.0

784.7
¯ ¯

aA symmetric stretch state.
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states are energetically metastable, the only pathway avail-
able for their decay is through the other channel of the PES,
which describes 16O18O products and �due to lower ZPE� is
already open at these energies. One can probably say that
although these states are energetically unstable, they are to-
pologically trapped. But the trapping is not by a barrier of
any sort. In order to decay these states do not need to tunnel,
the open channel is around the corner �see Fig. 1�, but they
have to “flow” through the well region of the PES. Put an-
other way, the molecular geometry and the internal energy
distribution would have to rearrange from the
16O16O– 18O-like into the 16O– 16O18O-like. As a result these
states exhibit anomalously long lifetimes, ��100 ps. One
can also say that these states are trapped by quantum ZPE.
To the best of our knowledge resonances of this type have
never been described in the literature before and is one of the

major findings of this paper. All the narrow resonances in the
�ZPE range exhibit this property and we believe it is general
and may occur in other molecules as well. Also, there is
some similarity in the nature of these long-lived metastable
states and the true bound states of heavy-light-heavy systems
such as I+HI, where the bound states are formed in the
absence of any attractive well due to vibrationally adiabatic
stabilization of the transition state region of a repulsive
PES.48–50

Figure 5 represents wave function for a typical broad
metastable state in the �ZPE range. Since the width � j for
this state is significant, the imaginary part of the wave func-
tion is comparable to its real part and both are given in Fig.
5. The real and imaginary parts oscillate with gradually de-
creasing amplitudes up to r2�20.0 a.u., while the modulus
of the wave function oscillates up to r2�9.0 a.u. where it
reaches the maximum value and then exhibits a very long
tail. This wave function is also entirely localized in one
channel, but this channel corresponds to the 16O18O product
and is open. Opposite to the cases shown in Fig. 4, the decay
of this state through the open channel is direct and much
faster, which is reflected by its short lifetime ��0.15 ps. We
found that wave functions of all broad resonances in the
�ZPE region look qualitatively similar to the example given
in Fig. 5. Note that the difference of energies of the states
presented in Figs. 4 and 5 is quite small �only 4 cm−1� while
their lifetimes differ by three orders of magnitude. The rea-
son for this unusual behavior is now clear. It is due to local-
ization of the wave functions in only one channel which can
be either closed or open �due to �ZPE�.

Also, Figs. 4 and 5 explain why the scattering states are
captured well only by the wave packets started far in the
channels. The intensity of peaks in the half spectrum is pro-
portional to the amplitudes bj in Eq. �19�. These amplitudes
represent the value of the overlap between the initial wave
packet and the wave function for a given state. Since wave
functions for the scattering states exhibit maxima far in the
channels, the initial wave packets placed in those regions
will be most efficient. On the contrary, wave packets started
in the well region contain a large number of bound states so
that the scattering states they contain are much harder to
resolve.

As an additional test of the IVR calculations and in order
to understand why the wave functions of the scattering states
are localized in only one channel, we decided to calculate
and inspect the wave functions of the bound states. The
Hamiltonian matrix was diagonalized in the basis of 95
	95 harmonic oscillator functions using our 2D potential
from Fig. 1. For the 16O16O18O isotopomer we found more
than 70 states below the dissociation limit. For the majority
of these states, the difference between the eigenvalues ob-
tained by diagonalization �quantum� and Prony analysis of
wave packets �semiclassical� was about 0.2 cm−1. As usual,
the wave functions of the vibrational states near the bottom
of the well can be assigned introducing two quantum num-
bers �sym and �asym for progressions of symmetric �r1+r2�
and antisymmetric �r1−r2� stretch normal modes, respec-
tively. Even for an asymmetric ozone isotopomer 16O16O18O
all such wave functions look quite symmetric and each of

FIG. 4. Modulus of the wave functions for two metastable states at E
=840.4 and 861.4 cm−1 obtained from semiclassical propagation of a Gauss-
ian wave packet with 
=50, r1=9.0, and r2=2.28 a.u. The wave functions
are entirely localized in the closed channel and the lifetimes are very large.

FIG. 5. Modulus, real, and imaginary parts of the wave function for the
metastable state at E=857.4 cm−1 obtained from semiclassical propagation
of a Gaussian wave packet with 
=50, r1=2.28, and r2=9.0 a.u. The wave
function is entirely localized in the open channel and the lifetime is short.

154312-7 Anomalous isotope effect in ozone formation J. Chem. Phys. 127, 154312 �2007�

Downloaded 25 Mar 2008 to 134.48.20.29. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



them exhibits about equal probability in two channels. How-
ever, starting as early as �asym=2–3, the progression of an-
tisymmetric stretch normal mode states transforms into two
independent progressions of the local vibration mode states
localized in the corresponding channels and characterized by
new quantum numbers �16−1618 and �1616−18. The wave func-
tions from the energy region where this transformation takes
place �536–760 cm−1� are given in Fig. 6. Readers can see
that several lower states here, 61–64, are still quite symmet-
ric. Staring at state 65 the localization in the channels be-
comes very pronounced and continues to develop as vibra-
tional excitation increases. The last two states here, 71 and
72, are already entirely local and are qualitatively similar to
the metastable states given in Figs. 4 and 5. A similar effect
of transition from the normal mode character to a very pro-
nounced local mode character has been observed earlier in
the bound state spectra calculated for SO2 molecule.51

Note that the progression of the symmetric stretch nor-
mal mode states survives and such wave functions spread
about equally over the two channels. However, since one
quantum of the symmetric stretch is very large �compared to
one quantum of the local stretch� the spacing between these
states is also very large and such states are rare. The last
bound state of this kind is found at E=726.7 cm−1 and is 70
in Fig. 4. The next symmetric state is a metastable state at
891 cm−1 marked by superscript �a� in Table I. Note that this
state is already above the �ZPE range. Because its wave
function is about symmetric, it is captured by the initial wave
packet started in any channel and this is reflected in Table I.
The value of the width for this symmetric state is intermedi-
ate between the widths of states in the open and closed
channels.

IV. KINETICS

As outlined in the introduction we consider the energy
transfer mechanism of ozone formation, Eqs. �2� and �3�, and
assume that every metastable state is in equilibrium with
reactants/products. To simplify notations we introduce the
label A for the 16O18O channel �open at energies within the
�ZPE range due to lower ZPE� and the label B for the
16O16O channel �closed at these energies due to higher ZPE�.
As we demonstrated in the previous section, the majority of
metastable states are localized in only one channel. Forma-
tion and decay of such localized states will occur most effi-
ciently through this channel and in most cases we can ne-
glect contribution from another channel. This approximation
is applicable to all the metastable states of channel A �shown
as dashed blue lines in the diagram of Fig. 7�,

AO + AO2 � AO3
*�Ej�, Ej  AZPE, �22�

and to the metastable states of channel B with energies above
the BZPE �shown as dashed green lines in Fig. 7�,

BO + BO2 � BO3
*�Ej�, Ej  BZPE. �23�

An important exception should be made for those narrow
metastable states within the �ZPE energy range. Although
perfectly localized in channel B, they cannot be populated
from this channel because this channel is still closed at these
collision energies. Thus, for such states the contribution of
channel A is the only one available and must be taken into
account �shown as dotted red lines in Fig. 7�,

FIG. 6. Eigenfuctions �obtained from diagonalization� for the bound states in the range from 536 to 760 cm−1. Transformation of the normal mode character
into the local mode character is clearly seen. States are numbered starting at the ground vibrational state.
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AO + AO2 � �O3
*�Ej�,

AZPE � Ej � BZPE. �24�

The second exception is made for those rare symmetric
stretch states spread over both channels. In such cases the
contributions of the two channels is assumed to be 50/50,

AO + AO2 � SYMO3
*�Ej� � BO + BO2, Ej  BZPE.

�25�

These rare states are not shown in Fig. 7 for simplicity. Note
that in formula �22�–�25� the superscripts A and B are used in
order to relate to one or the other channel �i� the metastable
O3

* states, �ii� the atomic and diatomic reactants and prod-
ucts, and �iii� the ZPEs.

To characterize the processes of formation and decay of
the metastable states we introduce for every state the rate
constants kj

f and kj
d, respectively. Decay is a first order kinetic

process and its rate is simply related to the width of the state,

kj
d = � j . �26�

The formation rate constant kj
f is then found from the de-

tailed balance as kj
f =Kjkj

d, where the equilibrium constant is
calculated in a standard way using statistical mechanics. For
example, for the states populated from channel A,52

AKj = � 2�
A�kT

	3/2

exp�−
Ej − AZPE

kT
� . �27�

The expression for BKj is similar to Eq. �27� but contains the
reduced mass B� and BZPE of the channel B. For the stabi-
lization rate constant kji

s we adopted the “exponential down”
model,15,19,25 where for a transition from the metastable state
at energy Ej to another metastable or stable state at energy Ei

the stabilization rate decreases exponentially with the in-
crease of the energy gap,

kji
s = ��T�exp�−

Ej − Ei

�E
� . �28�

Here ��T� is the temperature dependent Lennard-Jones col-
lision frequency for O3

*+M stabilizing collisions,15,19,25 and
�E=20 cm−1 is the experimental value for ozone.53 Note
that for the metastable states localized in one channel it is
enough to consider only the stabilizing transitions onto the
states of the same channel, either A-to-A or B-to-B transi-
tions, that is, the transitions within the same local vibration
mode progression, either within �16−1618 or within �1616−18.
This is justified by the fact that the overlap between the
states localized in different channels is very small �imagine
overlapping Figs. 4 and 5� and the probability of such A-to-B

or B-to-A transitions must be negligibly small.
Derivation of the expressions for the channel specific

third order reaction rate coefficients of ozone formation, A�
and B�, is given in the Appendix. It is based on preequilib-
rium approximation and uses Eqs. �3� and �22�–�28�. The
final and most general result is given by Eqs. �A10�–�A16�.
Using the values of Ej and � j for all states from Table I, the
values of A� and B� can be calculated and the resultant iso-
tope effect R= B� / A� can be predicted. But first we discuss
two limiting cases when the complicated expressions
�A10�–�A16� become most transparent.

We showed earlier29 that within the framework of a
three-state model formulated for a single-channel problem
there are two limiting cases when the actual values of � j’s
for the metastable states become unimportant for the kinet-
ics, so that the reaction rate coefficient � is entirely deter-
mined by the values of Ej’s. Namely, in the limit of broad
�short-lived� resonances, � j �kji

s �M�, the rate coefficient �
depends only on energy gap between the states, Ej −Ei. In the
opposite limit, � j �kji

s �M�, the narrow �long-lived� reso-
nances can be treated simply as stable states.29 In the Appen-
dix to this paper we show that similar limiting cases can be
formulated for the multistate two-channel problem studied
here. The values of � j should satisfy generalized conditions
�A17� and �A19�, respectively. First we focus on the limit
when all the resonances are broad and the reaction rate co-
efficients for two channels can be calculated as �see Appen-
dix�

A� � �
j=1

ANm

�
i=1

ANb
AKjkji

s + �
j=1

BN�

�
i=1

BNb
AKjkji

s , �29�

B� � �
j=1

BNm

�
i=1

BNb
BKjkji

s . �30�

Here the first term in each expression describes contribution
from stabilization of the metastable states at energies above
the ZPE in each channel �labeled by j from 1 to either ANm or
BNm� onto the bound states of the same channel �labeled by i
from 1 to either ANb or BNb�. In Fig. 7 these processes are
shown as blue-to-black and green-to-black transitions. The
second term in Eq. �29� describes the contribution from sta-
bilization of the metastable states in the �ZPE energy range
in channel B �labeled by j from 1 to BN�� onto the bound
states of the same channel. In Fig. 7 these processes are
shown as red-to-black transitions. Note that although these
states belong to channel B they contribute to A� because they

FIG. 7. �Color� Formation process of an asymmetric
ozone isotopomer through two entrance channels differ-
ent by the �ZPE. Solid and dashed lines represent
bound and metastable states, respectively. See text and
Appendix for discussion.
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are populated only through channel A due to �ZPE �see Fig.
7�. This effect leads to a significant increase of A� relative to
B� and appearance of the anomalous isotope effect. In the
limit of broad resonances this effect is most significant; using
Eqs. �29� and �30� and energies Ej from Table I we obtain
R= B� / A��0.14. Analysis of Eq. �A17� shows that this lim-
iting case would be reached if all states would have
� j 0.4 cm−1. From Table I we see that all metastable states
in channel A and the states above BZPE in channel B are
broad enough. However, the values of � j for narrow reso-
nances in the closed channel are too small to satisfy this
condition. Thus, the limit of broad resonances is not reached
in our case and the isotope effect should not be that signifi-
cant. Still, we want to emphasize that Eq. �29� is a very
important result of the paper. It shows very clearly that the
anomalous isotope effect is due to the second additional term
in Eq. �29� which describes contribution of the metastable
states in the �ZPE energy range and leads to R�1.0.

It is also instructive to consider another limiting case,
when the resonances in the �ZPE range in channel B are
very narrow, as in Eq. �A19�, while all other resonances �as
was assumed in the previous example and is indeed the case�
are again broad. It is shown in the Appendix that in this case
the population and stabilization of the metastable states in
each channel occurs independently from another channel and
the reaction rate coefficients for two channels are simply

A� � �
j=1

ANm

�
i=1

ANb
AKjkji

s , �31�

B� � �
j=1

BNm

�
i=1

BNb
BKjkji

s + �
j=1

BNm

�
j�=1

BN�

BKjkjj�
s �32�

Note that in Eq. �32� for channel B the metastable states
above BZPE are stabilized onto the narrow metastable states
in the �ZPE range, i.e., the long-lived resonances play the
role of the bound states. The anomalous isotope effect disap-
pears in this case �compare to Eqs. �29� and �30�� and the
difference between A� and B� can only be due to the number
of states and the energy gaps between them, i.e., due to the
different density of states in channels A and B. One would
call this a normal isotope effect. Since �16+1618=10.78 and
�1616+18=11.52 �i.e., A�� B�� we should expect R1. In-
deed, using energies Ej from Table I in Eqs. �31� and �32� we
obtain R=1.30. Analysis of Eq. �A15� shows that this limit is
reached only when � j �0.003 cm−1 ��2 ns�, which means
that our narrow resonances are not narrow enough for this
limit and the anomalous isotope effect in our case should not
disappear in favor of the normal isotope effect.

Thus, the actual values of widths of the narrow reso-
nances in the �ZPE part of spectrum appear to be crucial for
accurate prediction of the isotope effect. Using the general
formula �A10�–�A16� and the actual data from Table I we
obtain R=0.36–0.72, where uncertainty is due to the error
bars of � j values of narrow resonances �see Table I�. Note
that experimental value of Rexp�0.63 for 16O16O18O falls in
this range. However, we should admit that the uncertainty is

quite large. It is thus an important conclusion of this work
that the isotope effect is very sensitive to the values of � j for
those narrow resonances in the �ZPE range.

V. CONCLUSIONS

In this paper we report two important developments.
First, we show that the semiclassical IVR method can be
successfully applied to calculate energies, lifetimes, and
wave functions of long-lived scattering resonances �meta-
stable states� in a barrierless potential with a deep attractive
well and long range interaction tails in the channels. Using a
new cutoff procedure for chaotic trajectories, we achieved
stable propagation of wave packets for up to t=4.0 ps. The
number of trajectories needed to obtain converged results
was, as usual, large �N=106–108 at t=0� but, since the tra-
jectories are totally independent, the parallel processing was
also very efficient. The intrinsic massive parallelization of
the method allowed us to achieve the wall-clock-time accel-
eration by several orders of magnitude. This demonstrates
that the IVR approach to scattering resonances is computa-
tionally appealing. The results of semiclassical wave packet
propagation agreed well with fully quantum results. Autocor-
relation functions were computed and then analyzed using
the Prony method which permits one to extract energies and
widths of the resonances. Further improvement of accuracy
for widths of very narrow resonances seems to be possible by
employing a method of analysis �other then Prony� that
would be less sensitive to the noise present in the semiclas-
sical autocorrelation function at long propagation times.

Second, we use this approach to study recombination
reaction which forms an asymmetric ozone isotopomer
16O16O18O. We demonstrate that wave functions of the meta-
stable O3

* states are highly localized in one or another chan-
nel. This interesting behavior can be explained by introduc-
ing two independent progressions of highly excited
vibrational states for 16O16O– 18O and 16O– 16O18O local
stretch modes. We show that within the �ZPE energy range,
when the 16O16O channel is still energetically closed, the
metastable states of the 16O16O– 18O progression are very
long lived ���50–500 ps� while the states of the
16O– 16O18O progression decay much faster
���0.1–0.3 ps�. This property correlates with the local
mode character found in the wave functions. The nature of
such narrow resonances in the �ZPE energy range is some-
what similar to the Feshbach resonances which occur due to
interaction between open and closed electronic channels. The
difference is that in our case only one electronic state is
involved and the two channels are the 16O16O+ 18O and the
16O+ 16O18O channels of a chemical reaction. The two chan-
nels are coupled by the PES, one is open and one is closed
due to quantum �ZPE.
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Finally, we study kinetics of this reaction and show that
these long-lived resonances in the �ZPE energy range are
responsible for the anomalous isotope effect found in ozone.
We demonstrate that the isotope effect is extremely sensitive
to lifetimes of these states. Thus, accurate determination of
widths of narrow resonances �in the range between 0.4 and
0.003 cm−1� becomes crucial for correct prediction of the
isotope effect.

In this work we consider a simplified 2D model of ozone
formation where the angle � in the Hamiltonian of Eq. �6�
was fixed. This is certainly an approximation, though it is
justified by the fact that the contribution of the insertion
reactions of type YO+ XOZO→ XOYOZO is known to be very
small in ozone. Of course, for the accurate prediction of the
isotope effect an extension of this work onto a three-
dimensional problem with a full dimensional accurate PES is
necessary. Using the semiclassical IVR approach and the
methodology developed here such an extension should be
relatively straightforward and we plan to explore this oppor-
tunity in the future.
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APPENDIX: CHANNEL SPECIFIC RECOMBINATION
RATE COEFFICIENT

The process of formation of an asymmetric ozone isoto-
pomer �such as 16O16O18O, for example� is represented in
Fig. 7. Two entrance channels and the well region are shown.
All the stable and metastable O3

* states important for the
recombination process are shown schematically. States are
divided into groups according to their role; color is used to
simplify understanding. All the states are numbered from go-
ing up from the bottom. In channel A the two groups of states
are bound states AO3�Ei� below the AZPE, labeled by
1� i� ANb �solid black� and metastable states AO3

*�Ej� above
the AZPE, labeled by 1� j� ANm �dashed blue�.

In channel B there are three groups of states: bound
states BO3�Ei� below the AZPE, labeled by 1� i� BNb �solid
black�, metastable states �O3

*�Ej� below the BZPE, labeled by
1� j� BN� �dotted red�, and metastable states BO3

*�Ej� above
the BZPE, labeled by 1� j� BNm �dashed green�.

Note that subscript � is used to number the narrow meta-
stable states within the �ZPE part of spectrum. Subscript m
is used for all other metastable states. Subscript b is used for
the bound states. Thus, only the value of BN� is strictly de-
fined, while the values of ANb, ANm, BNb, and BNm are some-
what arbitrary because we should only consider upper bound
and lower metastable states in the vicinity of the reaction
threshold �but we should include enough of them, of course�.
The symmetric stretch states �rare due to large quantum of
the vibrational energy for this mode� are not shown in this
picture for simplicity.

The rate of ozone formation can be obtained by looking
at the buildup of concentrations of stable O3 states �labeled
by i� due to stabilization of the metastable O3

* states �labeled
by j�,

rate = �
i=1

ANb �d�AO3�Ei��
dt

	 + �
i=1

BNb �d�BO3�Ei��
dt

	 , �A1�

where for every bound state we can write

d�AO3�Ei��
dt

= �
j=1

ANm

kji
s �AO3

*�Ej���M�, 1 � i � ANb �A2�

d�BO3�Ei��
dt

= �
j=1

BNm

kji
s �BO3

*�Ej���M�

+ �
j=1

BN�

kji
s ��O3

*�Ej���M�, 1 � i � BNb.

�A3�

Here �M� is the concentration of the bath gas molecules. The
second-order stabilization rate constant kji

s for stabilizing
transition Ej→Ei can be calculated using Eq. �28�. Concen-
trations of the metastable states for each channel ��AO3

*�Ej��,
��O3

*�Ej��, and �BO3
*�Ej��� are needed here and can be found

as follows. For each metastable state in channel A the master
equation is

d�AO3
*�Ej��

dt
= kj

f�AO��AO2� − kj
d�AO3

*�Ej��

− �
i=1

ANb

kji
s �AO3

*�Ej���M�

− �
j�=1

j−1

kjj�
s �AO3

*�Ej���M�

+ �
j�=j+1

ANm

kj�j
s �AO3

*�Ej����M�, 1 � j � ANm,

�A4�

where the first two terms describe formation and decay of
this metastable state �number j�, the third and fourth terms
describe its stabilization onto all bound and lower-lying
metastable states �up to j−1�, respectively, while the last
term describes stabilization of the upper-lying metastable
states �starting at j+1 and going up� onto this metastable
state. The rate coefficients for formation and decay are found
from Eqs. �26� and �27�. For the metastable states in channel
B at energies above BZPE the master equation is
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d�BO3
*�Ej��

dt
= kj

f�BO��BO2� − kj
d�BO3

*�Ej��

− �
i=1

BNb

kji
s �BO3

*�Ej���M� − �
j�=1

BN�

kjj�
s �BO3

*�Ej��

	�M� − �
j�=1

j−1

kjj�
s �BO3

*�Ej���M�

+ �
j�=j+1

BNm

kj�j
s �BO3

*�Ej����M�, 1 � j � BNm,

�A5�

where an additional term describes transitions onto the meta-
stable states in the �ZPE part of spectrum. However, for the
metastable states in channel B at energies below the BZPE
the master equation is

d��O3
*�Ej��

dt
= kj

f�AO��AO2� − kj
d��O3

*�Ej��

− �
i=1

BNb

kji
s ��O3

*�Ej���M� − �
j�=1

j−1

kjj�
s ��O3

*�Ej��

	�M� + �
j�=j+1

BN�

kj�j
s ��O3

*�Ej����M�

+ �
j�=1

BNm

kj�j
s �BO3

*�Ej����M�, 1 � j � BN�.

�A6�

Note that these states are formed from and decay to channel
A. Thus, we should use kj

f = AKjkj
d for these states.

Assuming the steady state conditions for every meta-
stable state

d�AO3
*�Ej��

dt
� 0,

d�BO3
*�Ej��

dt
� 0,

d��O3
*�Ej��

dt
� 0

�A7�

we can find from Eqs. �A4�–�A6� the concentrations of all
the metastable species, which then allows us to rewrite Eqs.
�A2� and �A3� in the following form:

d�AO3�Ei��
dt

= �AO��AO2��M�AA�i, �A8�

d�BO3�Ei��
dt

= �AO��AO2��M�A��i + �BO��BO2��M�BB�i

+ �BO��BO2��M�B��i, �A9�

where the third-order rate coefficients have been introduced
as

AA�i � �
j=1

ANm
AAPjkji

s , A��i � �
j=1

BN�

A�Pjkji
s ,

BB�i � �
j=1

BNm
BBPjkji

s , B��i � �
j=1

BN�

B�Pjkji
s . �A10�

The values of AAPj,
A�Pj,

BBPj, and B�Pj are computed using
recurrent formula starting at the upper states and going
down,

AAPj =

AKjkj
d + �M�� j�=j+1

ANm AAPj�
kj�j

s

kj
d + �M���i=1

ANbkji
s + � j�=1

j−1 kjj�
s �

, 1 � j � ANm,

�A11�

A�Pj =

AKjkj
d + �M�� j�=j+1

BN� A�Pj�
kj�j

s

kj
d + �M���i=1

BNbkji
s + � j�=1

j−1 kjj�
s �

, 1 � j � BN�,

�A12�

BBPj =

BKjkj
d + �M�� j�=j+1

BNm BBPj�
kj�j

s

kj
d + �M���i=1

BNbkji
s + � j�=1

BN�kjj�
s + � j�=1

j−1 kjj�
s �

,

�A13�
1 � j � BNm,

B�Pj =
�M��� j�=j+1

BN� B�Pj�
kj�j

s + � j�=1

BNmBBPj�
kj�j

s �
kj

d + �M���i=1

BNbkji
s + � j�=1

j−1 kjj�
s �

,

�A14�
1 � j � BN�.

Finally, the rate of ozone formation can be expressed as

rate = �AO��AO2��M��
i=1

ANb
AA�i + �AO��AO2��M��

i=1

BNb
A��i

+ �BO��BO2��M��
i=1

BNb
BB�i + �BO��BO2��M��

i=1

BNb
B��i

= �AO��AO2��M�A� + �BO��BO2��M�B� , �A15�

where the channel-specific third order rate coefficients were
introduced as

A� � �
i=1

ANb
AA�i + �

i=1

BNb
A��i,

�A16�

B� � �
i=1

BNb
BB�i + �

i=1

BNb
B��i.

These are used to calculate the ratio R= B� / A� for the isotope
effect.

There are two interesting limiting cases when the Eqs.
�A11�–�A14� can be simplified. If all the metastable states
are broad
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� j = kj
d � �kj,j−1

s �M� ,

Kj+1

Kj
kj+1,j

s �M� , � �A17�

we obtain

AAPj � AKj,
A�Pj � AKj ,

�A18�
BBPj � BKj,

B�Pj � 0.

Expressions for A� and B� in this limit also become very
simple; they are given in the text as Eqs. �29� and �30�.

If the resonances in the �ZPE range are narrow �an op-
posite limit�,

� j = kj
d � kj,j−1

s �M� , �A19�

we obtain for these states

A�Pj � 0,

�A20�

B�Pj �
� j�=j+1

BN� B�Pj�
kj�j

s + � j�=1

BNmBBPj�
kj�j

s

�i=1

BNbkji
s + � j�=1

j−1 kjj�
s

.

In this limit the expression for A� simplifies to Eq. �31� given
in the text. The expression for B� is somewhat harder to
derive. Using Eqs. �A19� and �A20� for narrow resonances in
the �ZPE range and Eqs. �A17� and �A18� for all other broad
resonances we obtain from Eqs. �A16� and �A10�

B� � �
j=1

BNm
BKj�

i=1

BNb

kji
s + �

j=1

BN�

B�Pj�
i=1

BNb

kji
s . �A21�

In the second term of Eq. �A21� which represents B�� we
have to expand the sum over j like this,

B�� � �
j=1

BN�

B�Pj�
i=1

BNb

kji
s = B�P1�

i=1

BNb

k1i
s

+ B�P2�
i=1

BNb

k2i
s + B�P3�

i=1

BNb

k3i
s + ¯ . �A22�

Using ansatz Eq. �A20� for B�P1 in the first term of �A22� we
obtain

B�� =
� j�=2

BN� B�Pj�
kj�1

s + � j�=1

BNmBKj�
kj�1

s

�i=1

BNbk1i
s

�
i=1

BNb

k1i
s + B�P2

	�
i=1

BNb

k2i
s + B�P3�

i=1

BNb

k3i
s + ¯ . �A23�

Note that in the first term of Eq. �A23� the sum over the
bound states cancels out and only the nominator survives.
Expanding the first term in the nominator we obtain

B�� = �
j�=1

BNm
BKj�

kj�1
s + B�P2k21

s + B�P3k31
s

+ ¯ + B�P2�
i=1

BNb

k2i
s + B�P3�

i=1

BNb

k3i
s + ¯ . �A24�

In Eq. �A24� we can combine the terms with B�P2, B�P3,
etc., and use Eq. �A20� again; now for B�P2,

B�� = �
j�=1

BNm
BKj�

kj�1
s

+
� j�=3

BN� B�Pj�
kj�2

s + � j�=1

BNmBKj�
kj�2

s

�i=1

BNbk2i
s + k21

s
��

i=1

BNb

k2i
s + k21

s 	
+ B�P3��

i=1

BNb

k3i
s + k31

s 	 + ¯ . �A25�

Note that in the second term of Eq. �A25� the sum over the
bound states cancels out again. Repeating this procedure �Nm
times we obtain

B�� = �
j�=1

BNm
BKj�

kj�1
s + �

j�=1

BNm
BKj�

kj�2
s + ¯ + �

j�=1

BNm
BKj�

kj�,�Nm

s

= �
j=1

BNm
BKj �

i=1

�Nm

kji
s . �A26�

Combining this result with the first term in Eq. �A21� we
obtain Eq. �32� given in the text for B�.
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