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Abstract—In clinical practice, large amounts of heterogeneous
medical data are generated on a daily basis. This data has the
potential to be used for biomedical research and as a diagnostic
reference for physicians. However, leveraging heterogeneous data
for analysis requires integrating it first. Integration process
includes a pre-processing data cleaning phase that eliminates
inconsistencies and errors originating from each data source. In
this paper, we describe a workflow for cleaning heterogeneous
biomedical data sources. Our novel data cleaning approach can
be applied for replacement of missing text and to improve the
number of relevant cases retrieved by search queries. When the
threshold for missing category replacement is met, our results
show that our method achieves a missing content replacement
precision of 85%, which represents an improvement of 18% over
the baseline state of our datasets.

Index Terms—Data cleaning, Data integration, Medical
datasets, Semi-structured data, Information retrieval

I. INTRODUCTION

Biomedical research needs data integration techniques to
combine available heterogeneous data sources. Some public
data sources are available online; all hospitals generate vast
amounts of internal data that is used internally and may
be partially released after the data is anonymized through
de-identification techniques. Making these data accessible to
researchers and doctors in a unified data repository would
contribute to progress in the field of biomedical research.
Biomedical data is generated by different experts and through
different processes, commonly producing heterogeneous con-
tent, such as clinical reports, radiology teaching files, or x-
ray datasets. Data may be stored in different formats and
assume different terminology; there may be missing values
in different data categories. In order to integrate these datasets
into a common repository, these inconsistencies need to be
reduced with data cleaning approaches. The medical domain
has relatively few significant public data sources. Even with
the recent major efforts such as LIDC [1] and Chest x-ray
[2], little realistic biomedical data is available for research.
Therefore, the integrated search cannot afford to miss rele-
vant documents. Our main focus is thus on enhancing recall
(the fraction of the relevant documents that are successfully
retrieved) of the queries executed over an integrated medical
data repository.

In this paper, we propose an approach to clean biomedical
data and facilitate data source integration. Current research
literature estimates that data discovery and integration ac-
counts for 80% of data scientist’s work [3]. Data preparation
includes finding relevant data sources, extracting data from
those data sources, data cleaning, data transformation, and
data integration. Our data integration workflow is designed to
streamline the data preparation process. We collected datasets
from different biomedical data sources and evaluated our data
cleaning process (see Section III-A). Our techniques should
extend to similar datasets from the biomedical domain. Our
experiments validate our approach by measuring the impact
of our data cleaning approaches including replacement of
missing data, numeric and date correction, and abbreviation
expansion based on the precision and recall of queries over
medical datasets. We show that our three types of data cleaning
approaches improve precision and recall of query retrieval, on
average, by 50%.

II. RELATED WORK

Data cleaning is the task of detecting and removing errors
and inconsistencies from collected data; prior research applied
data cleaning primarily for analytics of structured data. We
discuss the importance of data cleaning in data integration,
including the challenges and solutions from previous studies.

Woo et al. [4] describe a data cleaning mechanism that uses
OpenRefine tool with clustering techniques for semi-structured
medical reports. Stonebraker et al. [3] talk about data integra-
tion challenges in a real-world use case Tamr (https://www.
tamr.com/). In our previous work [5] we discussed challenges
in designing integrated repository that combines biomedical
data sources. Prokoshyna et al. [6] discuss quantitative and
logical data cleaning approaches. Proposed work identified
semantic similarity between attributes using metric functional
dependency. This approach is most applicable in relational
databases where correlations between attributes are common.

Dziadkowiec et al. [7] discuss data integration for electronic
health records. Author integrated relational data and have
not considered the problems specific to unstructured data.
Mohammed et al. [8] talk about clinical data warehouse chal-
lenges . They demonstrate that clinical data is very domain-
specific and requires domain knowledge to apply data clean-
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ing approaches. Kruse et al. [9] discuss complexity of data
integration and data cleaning. Authors also discuss structural
conflict challenges and proposed a solution for relational data
to eliminate such structural conflicts.

From the literature survey we observed that most of data
cleaning work is done in the context of relational data. How-
ever, few papers discuss the same problem for unstructured
heterogeneous data such as biomedical data sources.

Rayhan et al. [10] discuss the use of abbreviations common
in medical reports. Authors present the problems associated
with using abbreviations and discuss the need for uniformity
in medical reports. From our previous research [11], we
observed that radiologists commonly use abbreviations in
clinical reports (e.g., CT for Computed Tomography, MRI
for Magnetic Resonance Imaging). Our analysis also showed
that different clinical reports use different names for the same
category contents (e.g., Differential Diagnosis category may
be named DDX). Data cleaning should therefore synchronize
terms and their corresponding abbreviations.

III. METHODOLOGY

In this section we describe our data sources, the search op-
erations that we perform to evaluate results, and data cleaning
issues associated with medical data integration.

A. Data sources

We used 4 different data sources and 2 medical ontologies.
Radiology Society of North America Medical Imaging Re-
source Community (http://mirc.rsna.org/query) RSNA MIRC
is a large repository of 2,500 teaching files with cases includ-
ing patient history, diagnosis, differential diagnosis, findings,
discussion as well as external references (e.g., journal arti-
cles). Teaching files are used as a learning source by radi-
ology students and doctors. Weinberger et al. developed My-
Pacs.net [12] webservice that allows radiologists to share (cre-
ate, upload, and modify) teaching cases. 17,000 teaching cases
were publicly available between 2002 and 2019. EURORAD
(http://www.eurorad.org/) is a dataset with radiology case
reports more than 7,200, operated by the European Society of
Radiology. National Institutes of Health provides a dataset [13]
with more than 3,500 public clinical reports. Medical ontolo-
gies provide definitions, synonyms, and conceptual relation
information for medical terms. We used Radiology Lexicon
(RadLex, http://radlex.org/) containing more than 45,000 terms
and Systematized Nomenclature of Medicine Clinical Terms
(SNOMED CT, https://www.nlm.nih.gov/healthit/snomedct/)
with more than 300,000 terms.

Integration of these data sources is challenge due to their
heterogeneous nature. For example, some data sources (e.g.,
MIRC, MyPacs) have title, diagnosis, history, differential diag-
nosis, findings, and discussion categories. Other data sources
(e.g., NIH x-ray, EURORAD) do not have findings, history, or
differential diagnosis categories. Instead, these sources provide
other information fields such as observation, procedure, or
image findings. We also observed data inconsistency such as
varied use of abbreviation and different date format.

B. Search mechanism

We use three different types of search to evaluate the
performance of our data cleaning approach. The first search
type is a diagnostic search that queries the diagnosis category.
Diagnostic search finds relevant cases based on the presence
of the search terms in the diagnosis category. In NIH x-ray
dataset, impression is the category that discusses the diagnosis
of the case, so for the purposes of our analysis we consider im-
pression category as a diagnosis category. The second search
type is an abbreviation search that inspects the entire text of
the clinical case. Both search types apply query expansion
– searching for query terms and abbreviations of the query
terms. Third type of a search is a basic content search search
that uses queries related to age or date of modification that
inspects the entire text of clinical cases. In practice, users of
medical search engines are often interested in the diagnostic
search feature. For example, Openi (https://openi.nlm.nih.gov/)
is a biomedical search engine that provides text-based and
image-based search and retrieves abstracts and images from
biomedical collection. Openi allows users to rank the results
using diagnosis contents of the case. Medical search engines
retrieve the information from the diagnosis category of the
clinical reports; e.g., IRIS [14] search ranks results based on
weighted relevance, providing most weight to diagnostic cate-
gory contents. In this paper we use diagnostic and abbreviation
search to show how data cleaning improves search results.

C. Data cleaning challenges in medical domain

As discussed in Section III-A, defined data categories can
differ for each data source. Some cases are furthermore miss-
ing content in these categories (due to space limitations we
summarize for a few categories). Our content analysis shows
that MIRC dataset is missing 3.7% of diagnosis contents,
MyPacs is missing 31% of diagnoses, EURORAD is missing
1.7% of diagnoses, and NIH Chest X-ray is missing 1% of
diagnoses. MyPacs is missing significantly more in diagnosis
category, although all of the datasets have some missing
diagnostic information. For MyPacs dataset 5% of titles are
missing, other datasets do not have any missing contents
for the title category. History contents missing from MIRC
are 4.2%, MyPacs: 27%, EURORAD: 3.1%, and NIH x-ray
dataset does not have history (or equivalent) category. We next
discuss three types of data cleaning challenges: missing values,
errors and inconsistent values, and varying abbreviations.

a) Missing values: In multi-source data cleaning, in-
terpreting of NULL entries presents one of the most sig-
nificant challenges. In single-source data integration, it may
be possible to replace missing contents by working with the
producer of the data. However, in multi-source integration
(from different independent locations), content replacement is
more difficult because many users and producers are associated
with designing and populating data sources. We strive to
design a uniform data cleaning solution that applies across
all data sources to integrate heterogeneous biomedical data.
While it may be possible to design a better custom data
cleaning solution for a particular dataset, it will not be useful
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across other data sources. If a user searches for a particular
diagnosis information and diagnosis category contents are
missing, then although other contents from the case provides
information relevant to the query, that case might not be
ranked as a top relevant case. For example, a case with
“cardiomegaly” title (an enlargement of heart) might not have
diagnosis information available but other contents from this
case (e.g., title, discussion) may show that this is a relevant
case. However, because diagnosis information is not available
this case might not be retrieved by the “cardiomegaly” query.

b) Errors and inconsistent values: Our data analysis
shows that date categories (such as date of modification or date
of creation) contains different errors and inconsistencies in dif-
ferent datasets. For example, “20000-12/19” has an additional
digit in the year field and separators are not consistent. Based
on geographical location of the data sources, date formats
can be different (e.g., MM-DD-YYYY or DD-MM-YYYY).
In history category, patient age may be recorded erroneously,
such as “190 year old female with diabetic history”. Medical
data is typically de-identified when it is shared publicly; each
data source provider applies their own de-identification tech-
niques. For example, NIH clinical reports de-identify patient
personal details by replacing personal information such as date
of birth with “xxx”. MIRC and MyPacs datasets do not provide
any personal information but these data sources are meant as a
learning source by radiology students and de-identified some
of the personal details (e.g., name, address).

The bulk of work that addressed data cleaning problems
focused on structured data integration. Data cleaning for
unstructured data remains an open challenge, particularly in
the medical domain because it requires significant domain
knowledge. In structured relational data domains, it is possible
to perform data cleaning based on the known constraints and
correlations. For example, if we know date of birth of the
patient, we can find the missing value for the age of the patient.
However, we do not expect such functional dependency to
exist in unstructured data; finding useful correlations between
text categories is difficult.

c) Abbreviations: Structure and content of the clinical
reports varies from hospital to hospital. When preparing a
clinical report, radiologists and doctors use medical abbre-
viations and usage of abbreviations differs across different
hospitals. Our data analysis and literature survey shows that
radiologists use additional abbreviation that are not part of the
current medical ontologies (e.g., “CT” which is “Computed
Tomography” does not appear in ontologies). In such cases,
data retrieval algorithms might treat the abbreviation and
the term itself differently. Moreover, from our data sources
we observed that equivalent categories are represented with
different names. For example, some data sources use “DDX”
while others use “Differential Diagnosis” – both of these
categories represent patient’s differential diagnosis.

D. Data cleaning approaches for biomedical data

In this section, we describe our data cleaning method. We
believe that our data cleaning process would be applicable in

other medical domains with similar types of data. We structure
our approach through the following steps:

1) Replacing missing category contents in medical reports.
2) Removing errors and replacing inconsistencies in dates,

ages, garbage characters, and NLP pre-processing (e.g.,
customized stop-word removal, stemming).

3) Abbreviations substitution through medical dictionaries
and ontologies.

We apply steps in this order so that the results of the first
two steps (replacement of missing and inconsistent data) can
benefit from the final step of abbreviation substitution.

1) Replacing missing data in medical reports: We choose
to replace missing category in a report using another category
based on a similarity threshold. To measure the similarity
between two categories, we used the Gestalt pattern matching
similarity metric [15]. We use a character sequence similarity
measure (rather than word-based match) because term se-
quence can affect the meaning of a diagnosis. For example
“vertebrobasilar dolichoectasia causing trigeminal neuralgia”
shows that vertebrobasilar dolichoectasia creates pain in the
trigeminal nerve (responsible for sensation in a face). A dif-
ferent sequence, “trigeminal neuralgia causing vertebrobasilar
dolichoectasia”, indicates that trigeminal neuralgia causes the
vertebrobasilar dolichoectasia condition, which is elongation
and tortuosity of the basilar artery (blood supply system for
the brain and central nervous system). Equation 1 defines the
Gestalt similarity between two strings S1 and S2 by computing
the number of matching characters Km, multiplied by two and
divided by the total number of characters in both strings.

Dro =
2Km

|S1|+ |S2|
(1)

For example, “Renal artery aneurysms in Neurofibromato-
sis” and ”Renal artery aneurysms with proximal stenosis” has
a similarity ratio of 79%.

2) Removal of errors and replacement of inconsistent val-
ues: To validate dates, we check the pattern of date represen-
tation (separated by ’-’, ’/’, and other common delimiters). If
we detect formatting errors (e.g., some dates were separated by
’==’), we convert dates into a uniform format MM/DD/YYYY.
We also validate the date itself – day and month length should
not exceed two, year length should not exceed four. Any
date that exceeds the limit is trimmed down to the maximum
length. For example, date of creation or modification in a
clinical report might have values such as 200000-23-10. In
this case, we trim additional digits from the year and convert
it into 10/23/2000. As there is no way to determine which
digits are extra, we assume extra digits to be at the end. This
analysis is applied to the date of modification and date of
creation categories in our dataset as well as any other date-
based categories. In MIRC and MyPacs datasets, we observed
that age of the patient can be invalid. We check for age of the
patient to not exceed 120 years; if the age exceeds 120 then
we replace it with “unknown”.

We also apply stemming, lemmatization (removing inflec-
tional endings – e.g., “studies” and “studying” are converted to



“study”) using python NLTK library (https://www.nltk.org/),
language identification, garbage characters removal, and re-
moval of stop-words. Stop-words are the most common words
used in a language, removed in natural language processing
because term frequency of these words would be higher than
other important words in corpus (e.g., “the”, “but”, “and”).
Using medical ontologies (RadLex and SNOMED CT), we
created our own list of stop-words that we did not remove
from our data. For example, “with” or “no” are stop-words.
However, in medical domain these terms are significant and
may belong to an ontology entry or modify other medical
terms. We have identified 24 custom stop-words that we keep
in our dataset such as most, between, no, below, or with.

3) Abbreviation substitution: We substitute abbreviations
for terms in clinical data reports to maintain a uniform
terminology. Uses our abbreviation dictionary, we expand the
search to both the query term itself and the abbreviation of
that query term. We used well-known medical data sources
such as American College of Radiology (https://www.acr.org/),
Radiologyinfo (https://www.radiologyinfo.org/), Radiopaedia
(https://radiopaedia.org/), SNOMED CT, and RadLex ontol-
ogy to create our abbreviation dictionary. For example, for
“Computed Tomography” query our system searches for “CT”
and “Computed Tomography”.

E. Evaluation

In this section, we describe the search methodology used
to evaluate our approach, including our measure of search
result relevance. To evaluate our data cleaning approach, we
perform query search on the datasets before and after cleaning.
We used queries collected from radiologists at a well-known
medical hospital and from an extensive literature survey [16].
We split the set of queries into two different parts: diagnostic
queries (diagnosis-related terms) and queries for which there
is a medical abbreviation. We evaluated 14 diagnostic queries
(cardiomegaly, chiari, angiosarcoma, varicocele, acl tear, ap-
pendicitis, hepatic adenoma, annular pancreas, perthe, splenic
hemangioma, CCAM, pseudohypoparathyroidism, congenital
indifference, ameloblastoma) and 5 (cystic fibrosis, fibrocystic,
ff - free fluids, study of bladder function, plain x-ray) ab-
breviations queries. These queries are the most representative
queries from our collection (28 queries) of different queries
that represents diagnostic and abbreviation terms. We consider
the 10 most recent results (based on date of modification of
the case) for this evaluation.

Query retrieval results were evaluated with the help of
experts in NLP, databases, and information retrieval but with
no medical training. Retrieved results relevance evaluation
was based on a coding standards document. This coding
standards document was created with all relevant definitions
such as medical term synonyms and pertinent information
about the diseases. We created the coding standard based on
medical ontologies RadLex and SNOMED CT as well as other
reference sources. Evaluators scored search results on a binary
scale of 0 (“not relevant”) and 1 (“relevant”). Our evaluators
were given detailed instructions on what constitutes each of

the dataset categories based the coding standard document.
We present our results in terms of precision and recall. We
evaluated the precision of substitution by based on randomly
chosen 50 documents from each dataset where replacement
was performed; we computed precision using Equation 2.

Precision =
found and relevant

total found
(2)

found and relevant is the total number of documents where
manual evaluation shown the replaced diagnosis to be relevant
to the contents of the clinical report. total found is the total
number out of 50 documents that we evaluated from a set of
documents that was changed by content replacement approach.
We compute recall as shown in Equation 3.

Recall =
found and relevant

total relevant
(3)

IV. EXPERIMENTS AND RESULTS

In this section, we evaluate the improvements achieved by
our approach. We first performed an analysis using word cloud
generation for each individual category. From this analysis,
we observed that many of the cases were missing contents
in some categories. The amount of missing category contents
varies among different data sources: for example, in MIRC
3.7% of diagnoses are missing, while in MyPacs 31% of
diagnoses are missing (see Section III-C). We computed
the sequence similarity (using Equation 1) between different
categories to identify a replacement source for the missing
content. For example, in MIRC the average similarity between
title and history: 0.14, between differential diagnosis and
discussion: 0.23, and between findings and diagnosis: 0.51.
The average similarity between title and diagnosis categories
for the four datasets: MIRC similarity is 0.76, MyPacs is
0.65, EURORAD is 0.72, and NIH chest x-ray dataset is
0.20. NIH dataset has a very low similarity between title
and diagnosis because the title often contains case details and
hospital name. MyPacs has a lower similarity ratio compared
to MIRC and EURORAD because several of case titles use
a sequential number (e.g., CASE102, CASE1005) instead of
diagnosis-related terms. Only the title and diagnosis categories
have an average similarity above the threshold of 0.6. Some
of the categories (e.g., history, discussion) contain a lot of
general text making it difficult to replace category contents
with other values. For categories that are missing data, our
current algorithm replaces category contents with “NA”.

1) Evaluation of missing content replacement: We per-
formed a manual evaluation of the cases where missing
diagnosis contents were replaced by data from title category.
Our precision for MIRC dataset is 84%, for MyPacs the
precision is 82%, and for EURORAD the precision is 88%.
In order to evaluate the similarity threshold, we calculated
the average precision across all four datasets for different
similarity thresholds. As shown in Figure 1, the knee of
the curve can be found at the threshold of 0.6. Increasing
the threshold (i.e., requiring a higher similarity between title
and diagnosis) exhibits a small marginal improvement in the
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precision of the replacement. However, lowering the threshold
to 0.5 or below significantly decreases the average precision.

Figure 1. Average precision across 4 datasets.

V. EVALUATION ANALYSIS

We divided the evaluation of out results based on the specific
tasks described in Section III.

1) Relevance of substitution of missing contents and im-
provement in the diagnostic search: We evaluated our missing
value replacement algorithm by performing the diagnostic
search. For this evaluation, we ran 14 queries against the
diagnosis category to see the difference between results with
data cleaning applied (DC=YES) and with no data cleaning
(DC=NO). We chose query terms related to diagnosis termi-
nology which is why we excluded some of the previously
collected queries (e.g., “study”, “toxic” are too general and not
diagnosis-related). Figure 2 shows the increase in the number
of found documents (average for all 14 queries) using the
diagnostic search with 3 datasets. For MIRC dataset 8 queries
out of 14 (57%) have shown some improvement; similarly,
for MyPacs 71% and for EURORAD 50% of the queries
shown an increase in the number of found documents. Some

Figure 2. Diagnostic Search: with (YES) and without (NO) data cleaning

of the queries search for the term for which our data does
not contain a relevant diagnosis. For example, in EURORAD
“cardiomegaly” is not present and our algorithm returns zero
results even after replacing missing contents. MyPacs is one of
the largest datasets with a variety of cases and search results
show the most overall improvement. We observed a moderate
improvement in MIRC and EURORAD because many of our

queries (45%) do not match relevant cases in our dataset. Our
analysis shows that our missing contents replacement approach
improves diagnosis retrieval performance across all datasets
where the replacement threshold is met.

2) Improvement in the basic content search – removing
errors and replacing inconsistent contents: As described in
Section III, we removed errors and inconsistencies using
natural language processing techniques. Without data cleaning,
search queries were resulting in UTF data encoding errors; we
clean these errors using python string library. Even without
date of modification category cleaning, we were not able to
fetch any results for date or age-related queries (because of
errors and inconsistent date formats). We removed the errors
in date format, age representation and converted the dates into
a uniform format. After addressing these problems we were
able to execute queries related to dates in the clinical cases.
As we did not have any results without data cleaning i.e., for
DC=NO we have R = 0 and after data cleaning DC=YES
we have S 6= 0 then we have S > R, where R is recall for
DC=NO and S is recall for DC=YES.

Figure 3. Search with abbreviation substitution. with (YES) and without (NO)
data cleaning

3) Search improvement as a result of abbreviation substi-
tutions: Our abbreviation replacement considers query terms
and abbreviations for search evaluation. We used 5 queries
collected from radiologists and performed query search against
our four datasets. Figure 3 shows the improvement in number
of cases (an average for all 5 queries) using abbreviation
substitution.

Our abbreviation replacement improves the number of
retrieved relevant cases by applying query expansion. For
example, for “plain x-ray” our search retrieves cases with
“plain x-ray” and “xr” (an abbreviation for plain x-ray). We
evaluated these results with binary rating “relevant” and “not
relevant” based on the content of the retrieved cases. We
calculated the relevance of each query and then computed
the average percentile values for each dataset – averaging all
five query results together for each of our datasets. For NIH
chest x-ray dataset we did not observe any improvement for
two queries (“free fluids” and “study of bladder function”)
because our corpus does not contain these cases. That is the
reason why this dataset shows a smaller overall improvement
compared to other datasets. As we are using a real large-scale



medical dataset, evaluating all documents relevant to a search
is prohibitively expensive. To compute relevance of documents

Figure 4. Average precision graph

to context of search queries, we applied the following method.
We have the set of documents for DC=NO (we call this set
N) and then assume the recall is R. We further assume that
the set for DC=YES (we call this set Y) has a recall of S.
We then look at the documents in the set Y −N (where Y is
a strict superset of N). We examine the documents in the set
Y − N and if any are relevant then we conclude that recall
must have gone up and we show that S > R. As shown in

Figure 5. Average recall graph

Figure 4 and Figure 5 (accuracy graphs for three data clean-
ing approaches: DSNO: Diagnostic Search DC=NO, DSYES:
Diagnostic search DC=YES, OSASNO: Overall Search Abbre-
viation Substitution DC=NO, OSASYES: Overall Search Ab-
breviation substitution DC=YES), our missing data insertion
approach improves the average precision by 0.17 and average
recall by 0.21.

Replacing abbreviations in query search improves the aver-
age precision by 0.34 and recall by 0.31. This analysis shows
that our data cleaning approaches improves the quality of
search results.

VI. CONCLUSION

Data cleaning and missing content replacement for het-
erogeneous biomedical data is a challenging task. Research

work presented in this paper proposes and evaluates technique
for removing errors and inconsistencies in medical datasets,
decreasing the amount of missing contents, and improving
query result in terms of number of found cases. Our analysis
demonstrates that our data cleaning methods achieves a miss-
ing content replacement precision of 85%, which represents an
improvement of 18% over the baseline state of our datasets.
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