

Executive Functioning in an ADHD/LD, Concussion, and Typical Sample Ross, A., Song, S., Lesch, J., Simons, M., Nitta, M., & Hoelzle, J. Marquette University

INTRODUCTION

- Attention-deficit/Hyperactivity Disorder (ADHD) and learning disorders (LD) are often comorbid and there is debate whether these conditions are associated with a specific pattern of neurocognitive symptoms (Ackerman & Dykman, 1990; Stanford & Hynd, 1994; Wu, Anderson, & Castiello, 2002).
- Previous research shows that individuals with ADHD are more likely to endorse a history of concussion (Alosco, Fedor, & Gunstad, 2014)
- This research is examining Delis Kaplan Executive
 Functioning System (DKEFS): Trail Making Test (TMT) and
 Color Word Interference (CWI), performance differences
 among undergraduate students with ADHD/LD, those with a
 history of concussion, and healthy controls.

METHODS/PARTICIPANTS

- Undergraduate research participants were administered a full neuropsychological battery (N = 184, M(SD)_{ace}= 19.02 (1.16)).
- 3 groups were identified: Self-reported ADHD/LD
 (ADHD/LD; n = 13), a history of prior concussion
 (Concussion; n = 39) and no diagnosis (No DX; n = 120)
- One-way ANOVAs investigated group differences across TMT and CWI trials.
- Tukey's post hoc analyses further clarified performance differences between groups.

Table 1. Color Word Interference group differences across 4 trials

Color Word Interference Trials	■ Sum Of Squares ■	Mean Square		Significance 👨
Color Naming	19.219	9.61	1.711	0.184
Word Reading	32.041	16.02	2.973	0.054
Inhibition	0.989	0.495	0.116	0.891
Inhibition/Switching	21.942	10.971	2.06	0.131
T-11-0 T-11-11 T-1	1166			

Table 2. Trail Making Test group differences across 5 trials

rable 2. Trail Walking Feet group americines deleges a trails						
Trail Making Tasks Trials	□ Sum Of Squares	Mean Square	F S	gnificance 🔻		
Visual Scanning	20.218	3 10.109	3.801	0.024		
Number Sequencing	51.69	25.845	5.892	0.003		
Letter Sequencing	9.809	4.904	0.996	0.371		
Number/Letter Switching	32.67	16.338	3.514	0.032		
Motor Speed	15.603	7.802	2.393	0.095		

RESULTS

Figure 1. Trail Making Test means for No Dx, Concussion, and ADHD/LD groups across 5 trials

Figure 2. Color Word Interference means for No Dx, Concussion, and ADHD/LD groups across 4 trials

TMT

- Significant group differences were observed for TMT Trials 1 (Visual Scanning), 2 (Number Sequencing), and 4 (Number/Letter Switching; see Table 2)).
- Post-hoc analyses revealed that performance on TMT Visual Scanning was significantly lower for the LD/ADHD group (M(SD)= 10.67(1.50)) when compared to the concussion group (M(SD)= 12.10(1.3), p = .023)
- Performance on TMT Number Sequencing was significantly lower in the LD/ADHD group (M(SD)=10.25(3), p = .018) relative the health control group (M(SD)= 11.00(2.1), p = .008) and concussion group (M(SD)= 12.15(1.7)).
- Performance on TMT Number/Letter Switching was trending significantly lower for in the LD/ADHD group (M(SD)= 9.58(2.27), p= 0.052) compared to the concussion group.

CWI

- Overall, no difference was found between groups on all trials of the CWI task (See Table 1).
- CWI Word Reading was trending significantly lower for LD/ADHD group (M(SD) = 9.462 (3.07), p=.053) compared to the concussion and no diagnosis group.

DISCUSSION

This goal of this project was to see any differences among these groups in terms of their cognitive functioning.

TMT

Surprisingly, participants with a history of concussion demonstrated higher scores on the TMT visual scanning, number sequencing, and Number letter switching task than LD/ADHD group.

CWI

- No differences were reported between LD/ADHD, prior concussion and no dx groups on trials of CWI.
- This may indicate that the CWI used alone did not capture difference in executive function in these groups.

Limitations/Future Directions

- These results cannot be generalized to the population because of the collegiate/highly educated sample group
- LD/ADHD group was significantly smaller compared to the other groups

REFERENCES

- Ackerman, P. T., & Dykman, R. A. (1990). Prevalence of additional diagnoses in ADD and learning-disabled children. In K. Gadow (Ed.), *Advances in learning and behavior disorders: Vol. 6* (pp. 1–25). Greenwich, CT: JAI Press.
- Alosco, M. L., Fedor, A. F., & Gunstad, J. (2014). Attention deficit hyperactivity disorder as a risk factor for concussions in NCAA division-I athletes. *Brain injury*, 28(4), 472–474.

https://doi.org/10.3109/02699052.2014.887145

Stanford, L. D., & Hynd, G. W. (1994). Congruence of behavioral symptomatology in children with ADD/H, ADD/WO, and learning disabilities. *Journal of Learning Disabilities*, 27(4), 243–253.

https://doi.org/10.1177/002221949402700406

 Wu, K. K., Anderson, V., & Castiello, U. (2002).
 Neuropsychological evaluation of deficits in executive functioning for ADHD children with or without learning disabilities. *Developmental neuropsychology*, 22(2), 501–531.

https://doi.org/10.1207/S15326942DN2202 5